X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper2.git/blobdiff_plain/21acd27d6206a8953b43d61dea6597afdc47840d..5e1bb572d977977c4e5ff551998e82a01ebaff4a:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 178bf3b..56685d0 100644 --- a/paper.tex +++ b/paper.tex @@ -316,6 +316,21 @@ % argument is your BibTeX string definitions and bibliography database(s) %\bibliography{IEEEabrv,../bib/paper} %\bibliographystyle{elsarticle-num} + + + + + +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage[textsize=footnotesize]{todonotes} +\newcommand{\LZK}[2][inline]{% + \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace} + + + + + \begin{document} % % paper title @@ -324,8 +339,8 @@ % not capitalized unless they are the first or last word of the title. % Linebreaks \\ can be used within to get better formatting as desired. % Do not put math or special symbols in the title. -\title{A parallel implementation of Ehrlich-Aberth algorithm for root finding of polynomials -on Multi-GPU with OpenMP/MPI} +\title{Two parallel implementations of Ehrlich-Aberth algorithm for root finding of polynomials +on multiple GPUs with OpenMP and MPI} % author names and affiliations @@ -385,7 +400,9 @@ Fax: (888) 555--1212}} % As a general rule, do not put math, special symbols or citations % in the abstract \begin{abstract} -The abstract goes here. +\LZK{J'ai un peu modifié l'abstract. Sinon à revoir pour le degré max des polynômes testés après les tests de raph.} +Finding roots of polynomials is a very important part of solving real-life problems but it is not so easy for polynomials of high degrees. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices to find roots of polynomials of degree up-to 1.4 billion. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming. \LZK{Je n'ai pas bien saisi la dernière phrase.} + \end{abstract} % no keywords