X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper2.git/blobdiff_plain/b12ffe1a9023dfb1e6ae7647f1c84002f4bd0da6..ddc3794278a5e10aa4895f7c8582a07fb06f3e88:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index 69d42ae..41c5960 100644 --- a/paper.tex +++ b/paper.tex @@ -663,29 +663,26 @@ z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}} {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,\ldots,n \end{equation} -This method contains 4 steps. The first step consists of the initial -approximations of all the roots of the polynomial. The second step -initializes the solution vector $Z$ using the Guggenheimer -method~\cite{Gugg86} to ensure the distinction of the initial vector -roots. In step 3, the iterative function based on the Newton's -method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is -applied. With this step the computation of roots will converge, -provided that all roots are different. +This method contains 4 steps. The first step consists of the initial approximations of all the roots of the polynomial.\LZK{Pas compris??} +The second step initializes the solution vector $Z$ using the Guggenheimer method~\cite{Gugg86} to ensure the distinction of the initial vector roots.\LZK{Quelle est la différence entre la 1st step et la 2nd step? Que veut dire " to ensure the distinction of the initial vector roots"?} +In step 3, the iterative function based on the Newton's method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is applied. With this step the computation of roots will converge, provided that all roots are different.\LZK{On ne peut pas expliquer un peu plus comment? Donner des formules comment elle se base sur la méthode de Newton et de l'opérateur de Weiestrass?} +\LZK{Elle est où la 4th step??} +\LZK{Conclusion: Méthode mal présentée et j'ai presque rien compris!} In order to stop the iterative function, a stop condition is applied. This condition checks that all the root modules are lower -than a fixed value $\xi$. +than a fixed value $\epsilon$. \begin{equation} \label{eq:Aberth-Conv-Cond} -\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi +\forall i\in[1,n],~\vert\frac{z_i^k-z_i^{k-1}}{z_i^k}\vert<\epsilon \end{equation} + +\LZK{On ne dit pas plutôt "the relative errors" à la place de "root modules"? Raph nous confirmera quelle critère d'arrêt a utilisé.} + \subsection{Improving Ehrlich-Aberth method} -With high degree polynomials, the Ehrlich-Aberth method suffers from -floating point overflows due to the mantissa of floating points -representations. This induces errors in the computation of $p(z)$ when -$z$ is large. +With high degree polynomials, the Ehrlich-Aberth method suffers from floating point overflows due to the mantissa of floating points representations. This induces errors in the computation of $p(z)$ when $z$ is large. %Experimentally, it is very difficult to solve polynomials with the Ehrlich-Aberth method and have roots which except the circle of unit, represented by the radius $r$ evaluated as: @@ -702,33 +699,28 @@ In order to solve this problem, we propose to modify the iterative function by using the logarithm and the exponential of a complex and we propose a new version of the Ehrlich-Aberth method. This method allows us to exceed the computation of the polynomials of degree -100,000 and to reach a degree up to more than 1,000,000. This new -version of the Ehrlich-Aberth method with exponential and logarithm is -defined as follows: +100,000 and to reach a degree up to more than 1,000,000. The reformulation of the iteration~(\ref{Eq:EA1}) of the Ehrlich-Aberth method with exponential and logarithm is defined as follows, for $i=1,\dots,n$: \begin{equation} \label{Log_H2} -z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left( -p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right), +z^{k+1}_i = z_i^k - \exp(\ln(p(z_i^k)) - \ln(p'(z^k_i)) - \ln(1-Q(z^k_i))), \end{equation} where: -\begin{eqnarray} +\begin{equation} \label{Log_H1} -Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left( -\sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right) \nonumber \\ -i=1,...,n -\end{eqnarray} +Q(z^k_i) = \exp(\ln(p(z^k_i)) - \ln(p'(z^k_i)) + \ln(\sum_{i\neq j}^n\frac{1}{z^k_i-z^k_j})). +\end{equation} %We propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. -Using the logarithm and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values~\cite{Karimall98}. +Using the logarithm and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values~\cite{Karimall98}. \LZK{Je n'ai pas compris cette dernière phrase?} %This problem was discussed earlier in~\cite{Karimall98} for the Durand-Kerner method. The authors %propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. Using the logarithm and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}. -\subsection{Ehrlich-Aberth parallel implementation on CUDA} +\subsection{The Ehrlich-Aberth parallel implementation on CUDA} %We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial @@ -737,22 +729,12 @@ to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be -investigated. +investigated. \LZK{Répétition! Le même texte est déjà écrit comme intro dans la section II. Sinon ici on parle seulement de l'implémentation cuda sans mpi et openmp!} -Like any parallel code, a GPU parallel implementation first requires -to determine the sequential tasks and the parallelizable parts of the -sequential version of the program/algorithm. In our case, all the -operations that are easy to execute in parallel must be made by the -GPU to accelerate the execution of the application, like the step 3 -and step 4. On the other hand, all the sequential operations and the -operations that have data dependencies between threads or recursive -computations must be executed by only one CUDA or CPU thread (step 1 -and step 2). Initially, we specify the organization of parallel -threads, by specifying the dimension of the grid Dimgrid, the number -of blocks per grid DimBlock and the number of threads per block. +Like any parallel code, a GPU parallel implementation first requires to determine the sequential code and the data-parallel operations of a algorithm. In fact, all the operations that are easy to execute in parallel must be made by the GPU to accelerate the execution, like the steps 3 and 4. On the other hand, all the sequential operations and the operations that have data dependencies between CUDA threads or recursive computations must be executed by only one CUDA thread or a CPU thread (the steps 1 and 2).\LZK{La méthode est déjà mal présentée, dans ce cas c'est encore plus difficile de comprendre que représentent ces différentes étapes!} Initially, we specify the organization of parallel threads by specifying the dimension of the grid \verb+Dimgrid+, the number of blocks per grid \verb+DimBlock+ and the number of threads per block. The code is organized kernels which are part of code that are run on GPU devices. For step 3, there are two kernels, the first named @@ -805,7 +787,7 @@ Copy results from GPU memory to CPU memory\; \section{The EA algorithm on Multiple GPUs} \label{sec4} -\subsection{M-GPU : an OpenMP-CUDA approach} +\subsection{an OpenMP-CUDA approach} Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid OpenMP and CUDA programming model. All the data are shared with OpenMP amoung all the OpenMP threads. The shared data @@ -858,7 +840,7 @@ shared memory arrays containing all the roots. %% roots sufficiently converge. -\begin{algorithm}[htpb] +\begin{algorithm}[h] \label{alg2-cuda-openmp} \LinesNumbered \SetAlgoNoLine @@ -875,7 +857,7 @@ Initialization of P\; Initialization of Pu\; Initialization of the solution vector $Z^{0}$\; omp\_set\_num\_threads(num\_gpus)\; -\#pragma omp parallel shared(Z,$\Delta$ z,P)\; +\#pragma omp parallel shared(Z,$\Delta z$,P)\; \Indp { gpu\_id=cudaGetDevice()\; @@ -890,11 +872,12 @@ $ error= Max(\Delta z)$\; copy $Z_{loc}$ from GPU to Z in CPU } \Indm} +\RC{Est ce qu'on fait apparaitre le pragma? J'hésite...} \end{algorithm} -\subsection{Multi-GPU : an MPI-CUDA approach} +\subsection{an MPI-CUDA approach} %\begin{figure}[htbp] %\centering % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA} @@ -905,40 +888,33 @@ Our parallel implementation of EA to find root of polynomials using a CUDA-MPI a Since a GPU works only on data already allocated in its memory, all local input data, $Z_{k}$, $ZPrec$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterwards, the same EA algorithm (Algorithm \ref{alg1-cuda}) is run by all processes but on different polynomial subset of roots $ p(x)_{k}=\sum_{i=1}^{n} a_{i}x^{i}, k=1,...,p$. Each MPI process executes the loop \verb=(While(...)...do)= containing the CUDA kernels but each MPI process computes only its own portion of the roots according to the rule ``''owner computes``''. The local range of roots is indicated with the \textit{index} variable initialized at (line 5, Algorithm \ref{alg2-cuda-mpi}), and passed as an input variable to $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize (\verb=MPI_Allreduce= function) by a reduction on $\Delta z_{k}$ in order to compute the maximum error related to the stop condition. Finally, processes copy the values of new computed roots from GPU memories to CPU memories, then communicate their results to other processes with \verb=MPI_Alltoall= broadcast. If the stop condition is not verified ($error > \epsilon$) then processes stay withing the loop \verb= while(...)...do= until all the roots sufficiently converge. -%% \begin{enumerate} -%% \begin{algorithm}[htpb] -%% \label{alg2-cuda-mpi} -%% %\LinesNumbered -%% \caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method} - -%% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance -%% threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)} - -%% \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)} - -%% \BlankLine -%% \item Initialization of P\; -%% \item Initialization of Pu\; -%% \item Initialization of the solution vector $Z^{0}$\; -%% \item Allocate and copy initial data from CPU memories to GPU global memories\; -%% \item $index= Size/num_gpus$\; -%% \item k=0\; -%% \While {$error > \epsilon$}{ -%% \item Let $\Delta z=0$\; -%% \item $kernel\_save(ZPrec,Z)$\; -%% \item k=k+1\; -%% \item $kernel\_update(Z,P,Pu,index)$\; -%% \item $kernel\_testConverge(\Delta z,Z,ZPrec)$\; -%% \item ComputeMaxError($\Delta z$,error)\; -%% \item Copy results from GPU memories to CPU memories\; -%% \item Send $Z[id]$ to all processes\; -%% \item Receive $Z[j]$ from every other process j\; -%% } -%% \end{algorithm} -%% \end{enumerate} -%% ~\\ - -%% \RC{ENCORE ENCORE PIRE} +\begin{algorithm}[htpb] +\label{alg2-cuda-mpi} +%\LinesNumbered +\caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method} + +\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance + threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)} + +\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)} + +\BlankLine +Initialization of P\; +Initialization of Pu\; +Initialization of the solution vector $Z^{0}$\; +Distribution of Z\; +Allocate memory to GPU\; +\While {$error > \epsilon$}{ +copy Z from CPU to GPU\; +$ZPrec_{loc}=kernel\_save(Z_{loc})$\; +$Z_{loc}=kernel\_update(Z,P,Pu)$\; +$\Delta z=kernel\_testConv(Z_{loc},ZPrec_{loc})$\; +$error=MPI\_Reduce(\Delta z)$\; +$Copy Z_{loc} from GPU to CPU$\; +$Z=MPI\_AlltoAll(Z_{loc})$\; +} +\end{algorithm} + \section{Experiments} \label{sec5}