X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper2.git/blobdiff_plain/bee311b2c8d32ff85b04e4d21e3ae9df2f25da8b..f9bf26cc810e585f03a82f4a0a5e8c64b96842ca:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 7bba549..962c7f9 100644 --- a/paper.tex +++ b/paper.tex @@ -565,6 +565,53 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA \section{The EA algorithm on Multi-GPU} \subsection{MGPU (OpenMP-CUDA)approach} +Before beginning the calculation, our implementation parallel with OpenMP and CUDA shares the input data between threads OpenMP, these input data sotn Z: the vector solution, P: the polynomial to solve, + +Before starting computations, our parallel implementation shared input data of the root finding polynomial between OpenMP threads. From Algorithm 1, the input data are the solution vector $Z$, the polynomial to solve $P$. Let number of OpenMP threads is equal to the number of GPUs, each threads OpenMP ( T-omp) checks one GPU, and control a part of the shared memory, that is a part of the vector Z like: $(n/Nbr_gpu)$ roots, n: the polynomial's degrees, $Nbr_gpu$ the number of GPUs. Then every GPU will have a grid of computation organized with its performances and the size of data of which it checks. In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP). + + + +Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm: +\begin{enumerate} +\begin{algorithm}[htpb] +\label{alg2-cuda} +%\LinesNumbered +\caption{CUDA OpenMP Algorithm to find roots with the Ehrlich-Aberth method} + +\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance + threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z_{max}$ (Maximum value of stop condition)} + +\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)} + +\BlankLine +// selection du GPU\; +\item cudaSetDevice(i)\; +// allocations memoire\; +\verb= #pragma omp single= +\item hostAlloc(P,Pu,Z)\; +\verb= #pragma omp parallel shared(Z,∆zmax,P)= +\item deviceAlloc(dP,dPu,dZ)\; +\verb= #pragma omp barrier= +// transfers CPU-GPU and compute GPU\; +\item copyH2D(P,dP)\; +\item copyH2D(Pu,dPu)\; +\item copyH2D(Zi,dZi)\; +\While {$\Delta z_{max} > \epsilon$}{ +\item Let $\Delta z_{max}=0$\; +\item $ kernel\_save(ZPrec,Z)$\; +\item k=k+1\; +//each GPU i compute the new root for his part dZi +\item $ kernel\_update(dZi,P,Pu)$\; +\item $kernel\_testConverge(\Delta z_{max},dZi,ZPrec)$\; +} +\item copyD2H(dZ,Zi)\; + // fin omp parallel\; + +\end{algorithm} +\end{enumerate} +~\\ + + \subsection{MGPU (MPI-CUDA)approach} \section{experiments} @@ -611,6 +658,20 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA \label{fig:06} \end{figure} +\begin{figure}[htbp] +\centering + \includegraphics[angle=-90,width=0.5\textwidth]{MPI_mpivsomp} +\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI} +\label{fig:07} +\end{figure} + +\begin{figure}[htbp] +\centering + \includegraphics[angle=-90,width=0.5\textwidth]{OMP_mpivsomp} +\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP} +\label{fig:08} +\end{figure} + % An example of a floating figure using the graphicx package. % Note that \label must occur AFTER (or within) \caption. % For figures, \caption should occur after the \includegraphics.