X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper2.git/blobdiff_plain/fc95f058592ab359f3dd6db1cccee14dad959494..02d8c9a3edf2d4c5545376b7663f09afc8b48116:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 1352fe9..be7faa0 100644 --- a/paper.tex +++ b/paper.tex @@ -315,7 +315,22 @@ \bibliographystyle{IEEEtran} % argument is your BibTeX string definitions and bibliography database(s) %\bibliography{IEEEabrv,../bib/paper} -\bibliographystyle{elsarticle-num} +%\bibliographystyle{elsarticle-num} + + + + +\usepackage{amsfonts} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage[textsize=footnotesize]{todonotes} +\newcommand{\LZK}[2][inline]{% + \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace} + + + + + \begin{document} % % paper title @@ -324,8 +339,7 @@ % not capitalized unless they are the first or last word of the title. % Linebreaks \\ can be used within to get better formatting as desired. % Do not put math or special symbols in the title. -\title{A parallel implementation of Ehrlich-Aberth algorithm for root finding of polynomials -on Multi-GPU with OpenMP/MPI} +\title{Two parallel implementations of Ehrlich-Aberth algorithm for root-finding of polynomials on multiple GPUs with OpenMP and MPI} % author names and affiliations @@ -385,7 +399,9 @@ Fax: (888) 555--1212}} % As a general rule, do not put math, special symbols or citations % in the abstract \begin{abstract} -The abstract goes here. +\LZK{J'ai un peu modifié l'abstract. Sinon à revoir pour le degré max des polynômes après les tests de raph.} +Finding roots of polynomials is a very important part of solving real-life problems but it is not so easy for polynomials of high degrees. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices to find roots of polynomials of degree up-to 1.4 billion. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming. +\LZK{Je n'ai pas bien saisi la dernière phrase.} \end{abstract} % no keywords @@ -404,66 +420,81 @@ The abstract goes here. \IEEEpeerreviewmaketitle - +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Introduction} -Polynomials are mathematical algebraic structures that play an important role in science and engineering by capturing physical phenomena and by expressing any outcome as a function of some unknown variables. Formally speaking, a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is : -%%\begin{center} -\begin{equation} - {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}. -\end{equation} -%%\end{center} +%Polynomials are mathematical algebraic structures that play an important role in science and engineering by capturing physical phenomena and expressing any outcome as a function of some unknown variables. Formally speaking, a polynomial $p(x)$ of degree $n$ having $n$ coefficients in the complex plane $\mathbb{C}$ is: +%\begin{equation} +%p(x)=\sum_{i=0}^{n}{a_ix^i}. +%\end{equation} +%\LZK{Dans ce cas le polynôme a $n+1$ coefficients et non pas $n$!} -The root finding problem consists in finding the values of all the $n$ different values of the variable $x$ for which \textit{p(x)} is null. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ then $p(x)$ can be written as : -\begin{equation} - {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}. -\end{equation} +%The issue of finding the roots of polynomials of very high degrees arises in many complex problems in various fields, such as algebra, biology, finance, physics or climatology [1]. In algebra for example, finding eigenvalues or eigenvectors of any real/complex matrix amounts to that of finding the roots of the so-called characteristic polynomial. -The problem of finding the roots of polynomials can be encountered in numerous applications. Most of the numerical methods that deal with this problem are simultaneous ones, i.e that find concurrently all of $n$ zeroes. These methods start from the initial approximations of all the roots of the polynomial and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method: +Finding roots of polynomials of very high degrees arises in many complex problems in various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form \begin{equation} -\label{DK} - DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})}, i = 1, . . . , n, +p(x) = \displaystyle\sum^n_{i=0}{a_ix^i}, \end{equation} -%%\end{center} -where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the -iteration $k$. -Another method discovered by -Borsch-Supan~\cite{ Borch-Supan63} and also described and brought -in the following form by Ehrlich~\cite{Ehrlich67} and -Aberth~\cite{Aberth73} uses a different iteration formula given as: -%%\begin{center} +where $\{a_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $a_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as : \begin{equation} -\label{Eq:EA} - EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n, + p(x)=a_n\displaystyle\prod_{i=1}^n(x-z_i), a_0 a_n\neq 0. \end{equation} +\LZK{Pourquoi $a_0a_n\neq 0$ ?} + +%The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase} +Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are Durand-Kerner method~\cite{} and Ehrlich-Aberth method~\cite{}. +\LZK{Pouvez-vous donner des références pour les deux méthodes?} + +%The first method of this group is Durand-Kerner method: +%\begin{equation} +%\label{DK} +% DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})}, i = 1, \ldots, n, +%\end{equation} +%where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the iteration $k$. Another method discovered by Borsch-Supan~\cite{ Borch-Supan63} and also described by Ehrlich~\cite{Ehrlich67} and Aberth~\cite{Aberth73} uses a different iteration form as follows: +%%\begin{center} +%\begin{equation} +%\label{Eq:EA} + %EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, \ldots, n, +%\end{equation} %%\end{center} -where $p'(z)$ is the polynomial derivative of $p$ evaluated in the -point $z$. +%where $p'(z)$ is the polynomial derivative of $p$ evaluated in the point $z$. %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence. -The main problem of the simultaneous methods is that the necessary time needed for the convergence is increased with the increasing of the degree of the polynomial. Many authors have treated the problem of implementing simultaneous methods in parallel. Freeman [10] implemented and compared DK, EA and another method of the fourth order proposed by Farmer -and Loizou [9], on a 8-processor linear chain, for polynomials of degree up to 8. -The third method often diverges, but the first two methods have speed-up equal to 5.5. Later, Freeman and Bane [11] considered asynchronous algorithms, in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before -making a new iteration. Couturier and al. [12] proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for distributed memory one with \textit{MPI}. They were able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only by using 8 personal computers and 2 communications per iteration. Comparing to the sequential implementation where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup. +The main problem of the simultaneous methods is that the necessary time needed for the convergence increases with the increasing of the polynomial's degree. Many authors have treated the problem of implementing simultaneous methods in parallel. Freeman~\cite{Freeman89} implemented and compared Durand-Kerner method, Ehrlich-Aberth method and another method of the fourth order of convergence proposed by Farmer and Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83} often diverges, but the first two methods (Durand-Kerner and Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman and Bane~\cite{Freemanall90} considered asynchronous algorithms in which each processor continues to update its approximations even though the latest values of other approximations $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods of parallelization for a shared memory architecture with OpenMP and for a distributed memory one with MPI. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with OpenMP and 135 seconds with MPI only by using 8 personal computers and 2 communications per iteration. The authors showed an interesting speedup comparing to the sequential implementation which takes up-to 3,300 seconds to obtain same results. +\LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP} -Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA) [13], a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al [14] proposed an implementation of the Durand-Kerner method on GPU. Their main result showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000. +Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000. -Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using parallel programming paradigms (OpenMP, MPI) on GPUs. We consider two architectures: shared memory with OpenMP API and distributed memory MPI API. The first approach is based on threads from the same system process, with each thread attached to one GPU and after the various memory allocations, each thread launches its part of computations. To do this we must first load on the GPU required data and after the computations are carried, repatriate the result on the host. The second approach i.e distributed memory with MPI relies on the MPI library which is often used for parallel programming [11] in -cluster systems because it is a message-passing programming language. Each GPU is attached to one MPI process, and a loop is in charge of the distribution of tasks between the MPI processes. This solution can be used on one GPU, or executed on a distributed cluster of GPUs, employing the Message Passing Interface (MPI) to communicate between separate CUDA cards. This solution permits scaling of the problem size to larger classes than would be possible on a single device and demonstrates the performance which users might expect from future -HPC architectures where accelerators are deployed. - -This paper is organized as follows, in section 2 we recall the Ehrlich-Aberth method. In section 3 we present EA algorithm on single GPU. In section 4 we propose the EA algorithm implementation on MGPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In section 5 we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic. - +%Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run. +%\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?} +%\LZK{Les contributions ne sont pas définies !!} + +In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA/MPI and CUDA/OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include: +\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres?} + \begin{itemize} +\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. +\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run. + \end{itemize} +\LZK{Pas d'autres contributions possibles?} + +%This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.} + +The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches. +\LZK{A revoir toute cette organization} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{Parallel Programmings Model} +\section{Parallel programming models} +\label{sec2} +Our objective consists in implementing a root-finding algorithm of polynomials on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We investigate two parallel paradigms: OpenMP and MPI. In this case, the GPU indices are defined according to the identifiers of the OpenMP threads or the ranks of the MPI processes. In this section we present the parallel programming models: OpenMP, MPI and CUDA. \subsection{OpenMP} -Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is -a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order -to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allocated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performance in large scale applications. Although usage of OpenMP threads and managed data explicitly done with MPI can be considered, this approcache undermines the advantages of OpenMP. +%Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allocated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performance in large scale applications. Although usage of OpenMP threads and managed data explicitly done with MPI can be considered, this approcache undermines the advantages of OpenMP. -%\subsection{OpenMP} %L'article en Français Programmation multiGPU – OpenMP versus MPI +%\subsection{OpenMP} %OpenMP is a shared memory programming API based on threads from %the same system process. Designed for multiprocessor shared memory UMA or %NUMA [10], it relies on the execution model SPMD ( Single Program, Multiple Data Stream ) @@ -473,29 +504,31 @@ to parallelize a loop. In this way, a set of loops can be distributed along the %Sequential natively. Threads share some or all of the available memory and can %have private memory areas [6]. +OpenMP (Open Multi-processing) is an application programming interface for parallel programming~\cite{openmp13}. It is a portable approach based on the multithreading designed for shared memory computers, where a master thread forks a number of slave threads which execute blocks of code in parallel. An OpenMP program alternates sequential regions and parallel regions of code, where the sequential regions are executed by the master thread and the parallel ones may be executed by multiple threads. During the execution of an OpenMP program the threads communicate their data (read and modified) in the shared memory. One advantage of OpenMP is the global view of the memory address space of an application. This allows relatively a fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of performances in large scale-applications. + \subsection{MPI} -The MPI (Message Passing Interface) library allows to create computer programs that run on a distributed memory architecture. The various processes have their own environment of execution and execute their code in a asynchronous way, according to the MIMD model (Multiple Instruction streams, Multiple Data streams); they communicate and synchronise by exchanging messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a multi-thread programming environment like OpenMP or Pthreads. +%The MPI (Message Passing Interface) library allows to create computer programs that run on a distributed memory architecture. The various processes have their own environment of execution and execute their code in a asynchronous way, according to the MIMD model (Multiple Instruction streams, Multiple Data streams); they communicate and synchronize by exchanging messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a multi-thread programming environment like OpenMP or Pthreads. + +MPI (Message Passing Interface) is a portable message passing style of the parallel programming designed especially for the distributed memory architectures~\cite{Peter96}. In most MPI implementations, a computation contains a fixed set of processes created at the initialization of the program in such way one process is created per processor. The processes synchronize their computations and communicate by sending/receiving messages to/from other processes. In this case, the data are explicitly exchanged by message passing while the data exchanges are implicit in a multithread programming model like OpenMP and Pthreads. However in the MPI programming model, the processes may either execute different programs referred to as multiple program multiple data (MPMD) or every process executes the same program (SPMD). The MPI approach is one of most used HPC programming model to solve large scale and complex applications. -\subsection{CUDA}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications -CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{NVIDIA12}. The -unit of execution in CUDA is called a thread. Each thread executes a kernel by the streaming processors in parallel. In CUDA, -a group of threads that are executed together is called a thread block, and the computational grid consists of a grid of thread -blocks. Additionally, a thread block can use the shared memory on a single multiprocessor while the grid executes a single -CUDA program logically in parallel. Thus in CUDA programming, it is necessary to design carefully the arrangement of the thread -blocks in order to ensure low latency and a proper usage of shared memory, since it can be shared only in a thread block -scope. The effective bandwidth of each memory space depends on the memory access pattern. Since the global memory has lower -bandwidth than the shared memory, the global memory accesses should be minimized. +\subsection{CUDA} +%CUDA (is an acronym of the Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{CUDA10}.The unit of execution in CUDA is called a thread. Each thread executes a kernel by the streaming processors in parallel. In CUDA, a group of threads that are executed together is called a thread block, and the computational grid consists of a grid of thread blocks. Additionally, a thread block can use the shared memory on a single multiprocessor while the grid executes a single CUDA program logically in parallel. Thus in CUDA programming, it is necessary to design carefully the arrangement of the thread blocks in order to ensure low latency and a proper usage of shared memory, since it can be shared only in a thread block scope. The effective bandwidth of each memory space depends on the memory access pattern. Since the global memory has lower bandwidth than the shared memory, the global memory accesses should be minimized. + +CUDA (Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{CUDA15} for GPUs. It provides a high level GPGPU-based programming model to program GPUs for general purpose computations and non-graphic applications. The GPU is viewed as an accelerator such that data-parallel operations of a CUDA program running on a CPU are off-loaded onto GPU and executed by this later. The data-parallel operations executed by GPUs are called kernels. The same kernel is executed in parallel by a large number of threads organized in grids of thread blocks, such that each GPU multiprocessor executes one or more thread blocks in SIMD fashion (Single Instruction, Multiple Data) and in turn each core of the multiprocessor executes one or more threads within a block. Threads within a block can cooperate by sharing data through a fast shared memory and coordinate their execution through synchronization points. In contrast, within a grid of thread blocks, there is no synchronization at all between blocks. The GPU only works on data filled in the global memory and the final results of the kernel executions must be transferred out of the GPU. In the GPU, the global memory has lower bandwidth than the shared memory associated to each multiprocessor. Thus in the CUDA programming, it is necessary to design carefully the arrangement of the thread blocks in order to ensure low latency and a proper usage of the shared memory, and the global memory accesses should be minimized. +%We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated. -We introduced three paradigms of parallel programming. Our objective consist to implement an algorithm of root finding polynomial on multiple GPUs. It primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPU is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\section{The EA algorithm on single GPU} -\subsection{the EA method} +\section{The Ehrlich-Aberth algorithm on a GPU} +\label{sec3} -A cubically convergent iteration method to find zeros of -polynomials was proposed by O. Aberth~\cite{Aberth73}. The -Ehrlich-Aberth method contains 4 main steps, presented in what -follows. +\subsection{The EA method} +%A cubically convergent iteration method to find zeros of +%polynomials was proposed by O. Aberth~\cite{Aberth73}. The +%Ehrlich-Aberth (EA is short) method contains 4 main steps, presented in what +%follows. %The Aberth method is a purely algebraic derivation. %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors @@ -521,74 +554,89 @@ follows. %Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% -\subsubsection{Polynomials Initialization} -The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$: +%\subsubsection{Polynomials Initialization} +%The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients %$a_{i}$: -\begin{equation} -\label{eq:SimplePolynome} - p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C -\end{equation} +%\begin{equation} +%\label{eq:SimplePolynome} +% p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C +%\end{equation} -\subsubsection{Vector $Z^{(0)}$ Initialization} -\label{sec:vec_initialization} -As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$ -The initial guess is very important since the number of steps needed by the iterative method to reach -a given approximation strongly depends on it. -In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$ -equi-spaced points on a circle of center 0 and radius r, where r is -an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96} -performed this choice by selecting complex numbers along different -circles which relies on the result of~\cite{Ostrowski41}. +%\subsubsection{Vector $Z^{(0)}$ Initialization} +%\label{sec:vec_initialization} +%As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , %n.$ +%The initial guess is very important since the number of steps needed by the iterative method to %reach +%a given approximation strongly depends on it. +%In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$ +%equi-distant points on a circle of center 0 and radius r, where r is +%an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96} +%performed this choice by selecting complex numbers along different +%circles which relies on the result of~\cite{Ostrowski41}. -\begin{equation} -\label{eq:radiusR} +%\begin{equation} +%\label{eq:radiusR} %%\begin{align} -\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}}; -v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\ +%\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}}; +%v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\ %%\end{align} -\end{equation} -Where: -\begin{equation} -u_{i}=2.|a_{i}|^{\frac{1}{i}}; -v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}. -\end{equation} +%\end{equation} +%Where: +%\begin{equation} +%u_{i}=2.|a_{i}|^{\frac{1}{i}}; +%v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}. +%\end{equation} -\subsubsection{Iterative Function} -The operator used by the Aberth method is corresponding to the -following equation~\ref{Eq:EA} which will enable the convergence towards -polynomial solutions, provided all the roots are distinct. +%\subsubsection{Iterative Function} +%The operator used by the Aberth method corresponds to the +%equation~\ref{Eq:EA1}, it enables the convergence towards +%the polynomials zeros, provided all the roots are distinct. %Here we give a second form of the iterative function used by the Ehrlich-Aberth method: +%\begin{equation} +%\label{Eq:EA1} +%EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}} +%{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, %i=1,. . . .,n +%\end{equation} + +%\subsubsection{Convergence Condition} +%The convergence condition determines the termination of the algorithm. It consists in stopping the %iterative function when the roots are sufficiently stable. We consider that the method converges %sufficiently when: + +%\begin{equation} +%\label{eq:Aberth-Conv-Cond} +%\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi +%\end{equation} + + +%\begin{figure}[htbp] +%\centering + % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm} +%\caption{The Ehrlich-Aberth algorithm on single GPU} +%\label{fig:03} +%\end{figure} + +the Ehrlich-Aberth method is an iterative method, contain 4 steps, start from the initial approximations of all the roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator~\cite{,}, wich will make it possible to converge to the roots solution, provided that all the root are different. + \begin{equation} -\label{Eq:EA} +\label{Eq:EA1} EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}} {1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n \end{equation} -\subsubsection{Convergence Condition} -The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function when the roots are sufficiently stable. We consider that the method converges sufficiently when: + At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots are lower than a fixed value $\xi$ \begin{equation} \label{eq:Aberth-Conv-Cond} \forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi \end{equation} +\subsection{EA parallel implementation on CUDA} +We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated. -%\begin{figure}[htbp] -%\centering - % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm} -%\caption{The Ehrlich-Aberth algorithm on single GPU} -%\label{fig:03} -%\end{figure} -%the Ehrlich-Aberth method is an iterative method, contain 4 steps, start from the initial approximations of all the -%roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots -%are lower than a fixed value $ε$ -\subsection{EA parallel implementation on CUDA} Like any parallel code, a GPU parallel implementation first requires to determine the sequential tasks and the parallelizable parts of the sequential version of the @@ -597,14 +645,14 @@ to execute in parallel must be made by the GPU to accelerate the execution of the application, like the step 3 and step 4. On the other hand, all the sequential operations and the operations that have data dependencies between threads or recursive computations must -be executed by only one CUDA or CPU thread (step 1 and step 2). Initially we specifies the organization of threads in parallel, need to specify the dimension of the grid Dimgrid: the number of block per grid and block by DimBlock: the number of threads per block required to process a certain task. - -we create the kernel, for step 3 we have two kernels, the -first named \textit{save} is used to save vector $Z^{K-1}$ and the kernel -\textit{update} is used to update the $Z^{K}$ vector. In step 4 a kernel is -created to test the convergence of the method. In order to -compute function H, we have two possibilities: either to use -the Jacobi method, or the Gauss-Seidel method which uses the +be executed by only one CUDA or CPU thread (step 1 and step 2). Initially, we specify the organization of parallel threads, by specifying the dimension of the grid Dimgrid, the number of blocks per grid DimBlock and the number of threads per block. + +The code is organzed by what is named kernels, portions o code that are run on GPU devices. For step 3, there are two kernels, the +first named \textit{save} is used to save vector $Z^{K-1}$ and the seconde one is named +\textit{update} and is used to update the $Z^{K}$ vector. For step 4, a kernel +tests the convergence of the method. In order to +compute the function H, we have two possibilities: either to use +the Jacobi mode, or the Gauss-Seidel mode of iterating which uses the most recent computed roots. It is well known that the Gauss- Seidel mode converges more quickly. So, we used the Gauss-Seidel mode of iteration. To parallelize the code, we created kernels and many functions to @@ -618,9 +666,7 @@ implement, as the development of corresponding kernels with CUDA is longer than on a CPU host. This comes in particular from the fact that it is very difficult to debug CUDA running threads like threads on a CPU host. In the following paragraph -Algorithm 1 shows the GPU parallel implementation of Ehrlich-Aberth method. - -Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA. +Algorithm~\ref{alg1-cuda} shows the GPU parallel implementation of Ehrlich-Aberth method. \begin{enumerate} \begin{algorithm}[htpb] @@ -656,11 +702,10 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA \section{The EA algorithm on Multi-GPU} - -\subsection{MGPU (OpenMP-CUDA) approach} -Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid OpenMP and CUDA programming model. It works -as follows. -Based on the metadata, a shared memory is used to make data evenly shared among OpenMP threads. The shared data are the solution vector $Z$, the polynomial to solve $P$. vector of error of stop condition $\Delta z$. Let(T\_omp) number of OpenMP threads is equal to the number of GPUs, each threads OpenMP checks one GPU, and control a part of the shared memory, that is a part of the vector Z like: $(n/num\_gpu)$ roots, n: the polynomial's degrees, $num\_gpu$ the number of GPUs. Each OpenMP thread copies its data from host memory to GPU’s device memory.Than every GPU will have a grid of computation organized with its performances and the size of data of which it checks and compute kernels. %In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP). +\label{sec4} +\subsection{MGPU : an OpenMP-CUDA approach} +Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid OpenMP and CUDA programming model. It works as follows. +Based on the metadata, a shared memory is used to make data evenly shared among OpenMP threads. The shared data are the solution vector $Z$, the polynomial to solve $P$, and the error vector $\Delta z$. Let (T\_omp) the number of OpenMP threads be equal to the number of GPUs, each OpenMP thread binds to one GPU, and controls a part of the shared memory, that is a part of the vector Z , that is $(n/num\_gpu)$ roots where $n$ is the polynomial's degree and $num\_gpu$ the total number of available GPUs. Each OpenMP thread copies its data from host memory to GPU’s device memory.Then every GPU will have a grid of computation organized according to the device performance and the size of data on which it runs the computation kernels. %In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP). %\begin{figure}[htbp] %\centering @@ -670,7 +715,7 @@ Based on the metadata, a shared memory is used to make data evenly shared among %\end{figure} %Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm: -$num\_gpus$ thread OpenMP are created using \verb=omp_set_num_threads();=function (line,Algorithm \ref{alg2-cuda-openmp}), the shared memory is created using \verb=#pragma omp parallel shared()= OpenMP function (line 5,Algorithm\ref{alg2-cuda-openmp}), than each OpenMP threads allocate and copy initial data from CPU memory to the GPU global memories, execute the kernels on GPU, and compute only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-openmp}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After each iteration, OpenMP threads synchronize using \verb=#pragma omp barrier;= to recuperate all values of vector $\Delta z$, to compute the maximum stop condition in vector $\Delta z$(line 12, Algorithm \ref{alg2-cuda-openmp}).Finally,they copy the results from GPU memories to CPU memory. The OpenMP threads execute kernels until the roots converge sufficiently. +$num\_gpus$ OpenMP threads are created using \verb=omp_set_num_threads();=function (step $3$, Algorithm \ref{alg2-cuda-openmp}), the shared memory is created using \verb=#pragma omp parallel shared()= OpenMP function (line $5$, Algorithm\ref{alg2-cuda-openmp}), then each OpenMP thread allocates memory and copies initial data from CPU memory to GPU global memory, executes the kernels on GPU, but computes only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-openmp}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After each iteration, all OpenMP threads synchronize using \verb=#pragma omp barrier;= to gather all the correct values of $\Delta z$, thus allowing the computation the maximum stop condition on vector $\Delta z$ (line 12, Algorithm \ref{alg2-cuda-openmp}). Finally, threads copy the results from GPU memories to CPU memory. The OpenMP threads execute kernels until the roots sufficiently converge. \begin{enumerate} \begin{algorithm}[htpb] \label{alg2-cuda-openmp} @@ -678,14 +723,14 @@ $num\_gpus$ thread OpenMP are created using \verb=omp_set_num_threads();=functio \caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method} \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance - threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( Vector of errors of stop condition), $num_gpus$ (number of OpenMP threads/ number of GPUs), $Size$ (number of roots)} + threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)} -\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)} +\KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)} \BlankLine -\item Initialization of the of P\; -\item Initialization of the of Pu\; +\item Initialization of P\; +\item Initialization of Pu\; \item Initialization of the solution vector $Z^{0}$\; \verb=omp_set_num_threads(num_gpus);= \verb=#pragma omp parallel shared(Z,$\Delta$ z,P);= @@ -710,16 +755,16 @@ $num\_gpus$ thread OpenMP are created using \verb=omp_set_num_threads();=functio -\subsection{Multi-GPU (MPI-CUDA) approach} +\subsection{Multi-GPU : an MPI-CUDA approach} %\begin{figure}[htbp] %\centering % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA} %\caption{The MPI-CUDA architecture } %\label{fig:03} %\end{figure} -Our parallel implementation of the Ehrlich-Aberth method to find root polynomial using (CUDA-MPI) approach, splits input data of the polynomial to solve between MPI processes. From Algorithm 3, the input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $zPrev$, and the Value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the size of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $⌈n/p⌉$ roots to find per MPI process, for each element mentioned above. Consequently, each MPI process $k$ will have its own solution vector $Z_{k}$,polynomial to be solved $p_{k}$, the error of stop condition $\Delta z_{k}$, Than each MPI processes compute only $⌈n/p⌉$ roots. +Our parallel implementation of EA to find root of polynomials using a CUDA-MPI approach is a data parallel approach. It splits input data of the polynomial to solve among MPI processes. In Algorithm \ref{alg2-cuda-mpi}, input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $ZPrev$, and the value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the degree of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $\lceil n/p \rceil$ roots to find per MPI process, for each $Z$ and $ZPrec$. Consequently, each MPI process of rank $k$ will have its own solution vector $Z_{k}$ and $ZPrec$, the error related to the stop condition $\Delta z_{k}$, enabling each MPI process to compute $\lceil n/p \rceil$ roots. -Since a GPU works only on data of its memory, all local input data, $Z_{k}, p_{k}$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterward, the same EA algorithm (Algorithm 1) is run by all processes but on different sub-polynomial root $ p(x)_{k}=\sum_{i=k(\frac{n}{p})}^{k+1(\frac{n}{p})} a_{i}x^{i}, k=1,...,p$. Each processes MPI execute the loop \verb=(While(...)...do)= contain the kernels. Than each process MPI compute only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-mpi}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize using \verb=MPI_Allreduce= function, in order to compute the maximum error stops condition $\Delta z_{k}$ computed by each process MPI line (line, Algorithm\ref{alg2-cuda-mpi}), and copy the values of new roots computed from GPU memories to CPU memories, than communicate her results to the neighboring processes,using \verb=MPI_Alltoallv=. If maximum stop condition $error > \epsilon$ the processes stay to execute the loop \verb= while(...)...do= until all the roots converge sufficiently. +Since a GPU works only on data already allocated in its memory, all local input data, $Z_{k}$, $ZPrec$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterwards, the same EA algorithm (Algorithm \ref{alg1-cuda}) is run by all processes but on different polynomial subset of roots $ p(x)_{k}=\sum_{i=1}^{n} a_{i}x^{i}, k=1,...,p$. Each MPI process executes the loop \verb=(While(...)...do)= containing the CUDA kernels but each MPI process computes only its own portion of the roots according to the rule ``''owner computes``''. The local range of roots is indicated with the \textit{index} variable initialized at (line 5, Algorithm \ref{alg2-cuda-mpi}), and passed as an input variable to $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize (\verb=MPI_Allreduce= function) by a reduction on $\Delta z_{k}$ in order to compute the maximum error related to the stop condition. Finally, processes copy the values of new computed roots from GPU memories to CPU memories, then communicate their results to other processes with \verb=MPI_Alltoall= broadcast. If the stop condition is not verified ($error > \epsilon$) then processes stay withing the loop \verb= while(...)...do= until all the roots sufficiently converge. \begin{enumerate} \begin{algorithm}[htpb] @@ -733,30 +778,29 @@ Since a GPU works only on data of its memory, all local input data, $Z_{k}, p_{k \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)} \BlankLine -\item Initialization of the P\; -\item Initialization of the Pu\; +\item Initialization of P\; +\item Initialization of Pu\; \item Initialization of the solution vector $Z^{0}$\; -\item Allocate and copy initial data from CPU memories to the GPU global memories\; +\item Allocate and copy initial data from CPU memories to GPU global memories\; \item $index= Size/num_gpus$\; \item k=0\; \While {$error > \epsilon$}{ \item Let $\Delta z=0$\; -\item $ kernel\_save(ZPrec,Z)$\; +\item $kernel\_save(ZPrec,Z)$\; \item k=k+1\; -\item $ kernel\_update(Z,P,Pu,index)$\; +\item $kernel\_update(Z,P,Pu,index)$\; \item $kernel\_testConverge(\Delta z,Z,ZPrec)$\; \item ComputeMaxError($\Delta z$,error)\; \item Copy results from GPU memories to CPU memories\; -\item Send $Z[id]$ to all neighboring processes\; -\item Receive $Z[j]$ from neighboring process j\; - - +\item Send $Z[id]$ to all processes\; +\item Receive $Z[j]$ from every other process j\; } \end{algorithm} \end{enumerate} ~\\ -\section{experiments} +\section{Experiments} +\label{sec5} We study two categories of polynomials: sparse polynomials and full polynomials.\\ {\it A sparse polynomial} is a polynomial for which only some coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles: \begin{equation} @@ -771,23 +815,22 @@ We study two categories of polynomials: sparse polynomials and full polynomials. {\Large \forall a_{i} \in C, i\in N; p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} \end{equation} For our tests, a CPU Intel(R) Xeon(R) CPU E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used. +%SIDER : Une meilleure présentation de l'architecture est à faire ici. -We performed a set of experiments on single GPU and Multi-GPU using (OpenMP/MPI) to find roots polynomials with EA algorithm, for both sparse and full polynomials of different sizes. We took into account the execution times and the polynomial size performed by sum or each experiment. -All experimental results obtained from the simulations are made in -double precision data, the convergence threshold of the methods is set -to $10^{-7}$. +In order to evaluate both the MGPU and Multi-GPU approaches, we performed a set of experiments on a single GPU and multiple GPUs using OpenMP or MPI by EA algorithm, for both sparse and full polynomials of different sizes. +All experimental results obtained are made in double precision data, the convergence threshold of the methods is set to $10^{-7}$. %Since we were more interested in the comparison of the %performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on %CPUs versus on GPUs. The initialization values of the vector solution of the methods are given in %Section~\ref{sec:vec_initialization}. -\subsection{Test with Multi-GPU (CUDA OpenMP) approach} +\subsection{Evaluating the M-GPU (CUDA-OpenMP) approach} -In this part we performed a set of experiments on Multi-GPU (CUDA OpenMP) approach for full and sparse polynomials of different degrees, compare it with Single GPU (CUDA). - \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP} +We report here the results of the set of experiments with M-GPU approach for full and sparse polynomials of different degrees, and we compare it with a Single GPU execution. +\subsubsection{Execution times in seconds of the EA method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP} - In this experiments we report the execution time of the EA algorithm, on single GPU and Multi-GPU with (2,3,4) GPUs, for different sparse polynomial degrees ranging from 100,000 to 1,400,000 +In this experiments we report the execution time of the EA algorithm, on single GPU and Multi-GPU with (2,3,4) GPUs, for different sparse polynomial degrees ranging from 100,000 to 1,400,000. \begin{figure}[htbp] \centering @@ -796,23 +839,23 @@ In this part we performed a set of experiments on Multi-GPU (CUDA OpenMP) appro \label{fig:01} \end{figure} -This figure~\ref{fig:01} shows that (CUDA OpenMP) Multi-GPU approach reduce the execution time up to the scale 100 whereas single GPU is of scale 1000 for polynomial who exceed 1,000,000. It shows the advantage to use OpenMP parallel paradigm to connect the performances of several GPUs and solve a polynomial of high degrees. +This figure~\ref{fig:01} shows that the (CUDA-OpenMP) Multi-GPU approach reduces the execution time by a factor up to 100 w.r.t the single GPU apparaoch and a by a factor of 1000 for polynomials exceeding degree 1,000,000. It shows the advantage to use the OpenMP parallel paradigm to gather the capabilities of several GPUs and solve polynomials of very high degrees. \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP} -This experiments shows the execution time of the EA algorithm, on single GPU (CUDA) and Multi-GPU (CUDA OpenMP) approach for full polynomials of degrees ranging from 100,000 to 1,400,000 +The experiments shows the execution time of the EA algorithm, on a single GPU and on multiple GPUs using the CUDA OpenMP approach for full polynomials of degrees ranging from 100,000 to 1,400,000. \begin{figure}[htbp] \centering \includegraphics[angle=-90,width=0.5\textwidth]{Full_omp} -\caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP} +\caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on multiple GPUs using shared memory paradigm with OpenMP} \label{fig:03} \end{figure} -The second test with full polynomial shows a very important saving of time, for a polynomial of degrees 1,4M (CUDA OpenMP) approach with 4 GPUs compute and solve it 4 times as fast as single GPU. We notice that curves are positioned one below the other one, more the number of used GPUs increases more the execution time decreases. +Results with full polynomials show very important savings in execution time. For a polynomial of degree 1,4 million, the CUDA-OpenMP approach with 4 GPUs solves it 4 times as fast as single GPU, thus achieving a quasi-linear speedup. -\subsection{Test with Multi-GPU (CUDA MPI) approach} -In this part we perform a set of experiment to compare Multi-GPU (CUDA MPI) approach with single GPU, for solving full and sparse polynomials of degrees ranging from 100,000 to 1,400,000. +\subsection{Evaluating the Multi-GPU (CUDA-MPI) approach} +In this part we perform a set of experiments to compare Multi-GPU (CUDA MPI) approach with single GPU, for solving full and sparse polynomials of degrees ranging from 100,000 to 1,400,000. \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI} @@ -823,8 +866,10 @@ In this part we perform a set of experiment to compare Multi-GPU (CUDA MPI) appr \label{fig:02} \end{figure} ~\\ -This figure shows 4 curves of execution time of EA algorithm, a curve with single GPU, 3 curves with Multi-GPUs (2, 3, 4) GPUs. We see clearly that the curve with single GPU is above the other curves, which shows consumption in execution time compared to the Multi-GPU. We can see the approach Multi-GPU (CUDA MPI) reduces the execution time up to the scale 100 for polynomial of degrees more than 1,000,000 whereas single GPU is of the scale 1000. -\\ +This figure shows 4 curves of execution time of EA algorithm, a curve with single GPU, 3 curves with multiple GPUs (2, 3, 4). We can clearly see that the curve with single GPU is above the other curves, which shows consumption in execution time compared to the Multi-GPU. We can see also that the CUDA-MPI approach reduces the execution time by a factor of 100 for polynomials of degree more than 1,000,000 whereas a single GPU is of the scale 1000. +%%SIDER : Je n'ai pas reformuler car je n'ai pas compris la phrase, merci de l'ecrire ici en fran\cais. +\\cette figure montre 4 courbes de temps d'exécution pour l'algorithme EA, une courbe avec un seul GPU, 3 courbes pour multiple GPUs(2, 3, 4), on peut constaté clairement que la courbe à un seul GPU est au-dessus des autres courbes, vue sa consomation en temps d'exècution. On peut voir aussi qu'avec l'approche Multi-GPU (CUDA-MPI) reduit le temps d'exècution jusqu'à l'echelle 100 pour le polynômes qui dépasse 1,000,000 tandis que Single GPU est de l'echelle 1000. + \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using distributed memory paradigm with MPI} \begin{figure}[htbp] @@ -833,39 +878,67 @@ This figure shows 4 curves of execution time of EA algorithm, a curve with singl \caption{Execution times in seconds of the Ehrlich-Aberth method for full polynomials on GPUs using distributed memory paradigm with MPI} \label{fig:04} \end{figure} +%SIDER : Corriger le point de la courbe 3-GPUs qui correpsond à un degré de 600000 + +Figure \ref{fig:04} shows the execution time of the algorithm on single GPU and on multipe GPUs with (2, 3, 4) GPUs for full polynomials. With the CUDA-MPI approach, we notice that the three curves are distinct from each other, more we use GPUs more the execution time decreases. On the other hand the curve with a single GPU is well above the other curves. + +This is due to the use of MPI parallel paradigm that divides the problem computations and assigns portions to each GPU. But unlike the single GPU which carries all the computations on a single GPU, data communications are introduced, consequently engendering more execution time. But experiments show that execution time is still highly reduced. -this figure shows the execution time of the algorithm EA, on single GPU and Multi-GPUS with (2, 3, 4) GPUs for full polynomials. With (CUDA-MPI) approach we notice that the three curves are distinct from each other, more we use GPUs more the execution time decreases, on the other hand the curve with single GPU is well above the other curves. -This is due to the use of parallelization MPI paradigm that divides the polynomial into sub polynomials assigned to each GPU. unlike the single GPU which solves all the polynomial on a single GPU, consequently it engenders more execution time. +\subsection{Comparative between (CUDA-OpenMP) approach and (CUDA-MPI) approach} +In this part we present some experiment comparing the two Multi-GPU approach (OpenMP versus MPI) for solving sparse polynomial, full polynomials than we compare the execution time of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with MPI and with OpenMP. + +\subsubsection{Comparison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving sparse polynomials on GPUs} +In this experiment we chose three polynomials of different size like (200K, 800K, 1,4M). We compare their execution time according to the number of the GPUs. \begin{figure}[htbp] \centering - \includegraphics[angle=-90,width=0.5\textwidth]{Sparse} -\caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving sparse plynomials on GPUs} + \includegraphics[angle=-90,width=0.5\textwidth]{Sparse} +\caption{Comparison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving sparse polynomials on GPUs.} \label{fig:05} \end{figure} +in figure ~\ref{fig:05} we have two curves: MPI curve and OpenMP curve for each polynomials size. We can see that the results are similar between OpenMP curves and MPI curves for the polynomials size (200K, 1,4M), but there is a slight different between MPI curve and OpenMP curve for the polynomial of size 800K. ... +\subsubsection{Comparison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving full polynomials on GPUs} \begin{figure}[htbp] \centering - \includegraphics[angle=-90,width=0.5\textwidth]{Full} -\caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving full polynomials on GPUs} + \includegraphics[angle=-90,width=0.5\textwidth]{Full} +\caption{Comparison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving full polynomials on GPUs.} \label{fig:06} \end{figure} +in figure ~\ref{fig:06}, we can see that the two paradigm MPI and OpenMP give the same result for solving full polynomials with EA algorithm. +% size (200k,800K, 1,4M) are very similar for solving full polynomials with the EA algorithm. +\subsubsection{Comparison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI} +in this experiment we compare the execution time of EA algorithm according to the number of the GPU for solving sparse and full polynomials on Multi-GPU using MPI. We chose three sparse and full polynomials of different size like (200K, 800K, 1,4M). \begin{figure}[htbp] \centering - \includegraphics[angle=-90,width=0.5\textwidth]{MPI} -\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI} + \includegraphics[angle=-90,width=0.5\textwidth]{MPI} +\caption{Comparison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI.} \label{fig:07} \end{figure} +in figure ~\ref{fig:07} we can see that (CUDA-MPI) can solve sparse and full polynomials of high degrees, the execution time with sparse polynomial are very low comparing to full polynomials. with sparse polynomials the number of monomial are reduce, consequently the number of operation are reduce than the execution time decrease. + +\subsubsection{Comparison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP} \begin{figure}[htbp] \centering - \includegraphics[angle=-90,width=0.5\textwidth]{OMP} -\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP} + \includegraphics[angle=-90,width=0.5\textwidth]{OMP} +\caption{Comparison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP.} \label{fig:08} \end{figure} +in figure ~\ref{fig:08} +\subsection{Scalability of the EA method on Multi-GPU to solve very high polynomials degrees} + This experiment we report the execution time according to the degrees polynomials ranging from 1,000,000 to 5,000,000 for both approaches (cuda-OpenMP) and (CUDA-MPI) with sparse and full polynomials. +\begin{figure}[htbp] +\centering + \includegraphics[angle=-90,width=0.5\textwidth]{big} + \caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials of high degrees on 4 GPUs.} +\label{fig:09} +\end{figure} +in figure ~\ref{fig:09} we can see that both (cuda-OpenMP) and (CUDA-MPI) approaches are scalable can solve very high polynomials degrees. with full polynomial the both approaches give very interesting ans similar results for polynomials of 5,000,000 degrees we not reach 30,000 s +%for sparse and full polynomials % An example of a floating figure using the graphicx package. % Note that \label must occur AFTER (or within) \caption. % For figures, \caption should occur after the \includegraphics. @@ -964,7 +1037,21 @@ This is due to the use of parallelization MPI paradigm that divides the polynomi \section{Conclusion} -The conclusion goes here~\cite{IEEEexample:bibtexdesign}. +\label{sec6} +In this paper, we have presented a parallel implementation of Ehrlich-Aberth algorithm for solving full and sparse polynomials, on single GPU with CUDA and on multiple GPUs using two parallel paradigms : shared memory with OpenMP and distributed memory with MPI. These architectures were addressed by a CUDA-OpenMP approach and CUDA-MPI approach, respectively. +The experiments show that, using parallel programming model like (OpenMP, MPI), we can efficiently manage multiple graphics cards to work together to solve the same problem and accelerate the parallel execution with 4 GPUs and solve a polynomial of degree 1,000,000, four times faster than on single GPU, that is a quasi-linear speedup. + + +%In future, we will evaluate our parallel implementation of Ehrlich-Aberth algorithm on other parallel programming model + +Our next objective is to extend the model presented here at clusters of nodes featuring multiple GPUs, with a three-level scheme: inter-node communication via MPI processes (distributed memory), management of multi-GPU node by OpenMP threads (shared memory). + +%present a communication approach between multiple GPUs. The comparison between MPI and OpenMP as GPUs controllers shows that these +%solutions can effectively manage multiple graphics cards to work together +%to solve the same problem + + + %than we have presented two communication approach between multiple GPUs.(CUDA-OpenMP) approach and (CUDA-MPI) approach, in the objective to manage multiple graphics cards to work together and solve the same problem. in the objective to manage multiple graphics cards to work together and solve the same problem.