]> AND Private Git Repository - kahina_paper2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
authorcouturie <couturie@extinction>
Fri, 15 Jan 2016 15:45:08 +0000 (16:45 +0100)
committercouturie <couturie@extinction>
Fri, 15 Jan 2016 15:45:08 +0000 (16:45 +0100)
paper.tex

index 18dd3c2b63e69b6341afe55ddd2bc67a1aa63a6f..d1ead14506bae4b3a37229619e425fe765b32f6d 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -359,9 +359,8 @@ Email: \{kahina.ghidouche,ar.sider\}@univ-bejaia.dz}
 \and
 \IEEEauthorblockN{Lilia Ziane Khodja, Raphaël Couturier}
 \IEEEauthorblockA{FEMTO-ST Institute\\
 \and
 \IEEEauthorblockN{Lilia Ziane Khodja, Raphaël Couturier}
 \IEEEauthorblockA{FEMTO-ST Institute\\
-  University of   Bourgogne Franche-Comte\\
-  France\\
-Email: zianekhodja.lilia@gmail.com, raphael.couturier@univ-fcomte.fr}}
+  University of   Bourgogne Franche-Comte, France\\
+Email: zianekhodja.lilia@gmail.com\\ raphael.couturier@univ-fcomte.fr}}
 
 % conference papers do not typically use \thanks and this command
 % is locked out in conference mode. If really needed, such as for
 
 % conference papers do not typically use \thanks and this command
 % is locked out in conference mode. If really needed, such as for
@@ -1219,13 +1218,25 @@ Under 1 million, OpenMPI and MPI are almost equivalent.
 
 \section{Conclusion}
 \label{sec6}
 
 \section{Conclusion}
 \label{sec6}
-In this paper, we have presented a parallel implementation of Ehrlich-Aberth algorithm for solving full and sparse polynomials, on single GPU with CUDA and on multiple GPUs using two parallel paradigms : shared memory with OpenMP and distributed memory with MPI. These architectures were addressed by a CUDA-OpenMP approach and CUDA-MPI approach, respectively. 
-The experiments show that, using parallel programming model like (OpenMP, MPI), we can efficiently manage multiple graphics cards to work together to solve the same problem and accelerate the parallel execution with 4 GPUs and solve a polynomial of degree 1,000,000, four times faster than on single GPU, that is a quasi-linear speedup.
+In this paper, we have presented a parallel implementation of
+Ehrlich-Aberth algorithm to solve full and sparse polynomials, on
+single GPU with CUDA and on multiple GPUs using two parallel
+paradigms: shared memory with OpenMP and distributed memory with
+MPI. These architectures were addressed by a CUDA-OpenMP approach and
+CUDA-MPI approach, respectively.  Experiments show that, using
+parallel programming model like (OpenMP, MPI). We can efficiently
+manage multiple graphics cards to solve the same
+problem and accelerate the parallel execution with 4 GPUs and solve a
+polynomial of degree up to 5,000,000, four times faster than on single
+GPU. 
 
 
 %In future, we will evaluate our parallel implementation of Ehrlich-Aberth algorithm on other parallel programming model 
 
 
 
 %In future, we will evaluate our parallel implementation of Ehrlich-Aberth algorithm on other parallel programming model 
 
-Our next objective is to extend the model presented here at clusters of nodes featuring  multiple GPUs, with a three-level scheme: inter-node communication via MPI processes (distributed memory), management of multi-GPU node by OpenMP threads (shared memory).
+Our next objective is to extend the model presented here with clusters
+of GPU nodes, with a three-level scheme: inter-node communication via
+MPI processes (distributed memory), management of multi-GPU node by
+OpenMP threads (shared memory).
 
 %present a communication approach between multiple GPUs. The comparison between MPI and OpenMP as GPUs controllers shows that these
 %solutions can effectively manage multiple graphics cards to work together
 
 %present a communication approach between multiple GPUs. The comparison between MPI and OpenMP as GPUs controllers shows that these
 %solutions can effectively manage multiple graphics cards to work together