+With high degree polynomial, the Ehrlich-Aberth method suffer from overflow because the limited number in the mantissa of floating points representations, which makes the computation of $p(z)$ wrong when z is large.
+
+Experimentally, it is very difficult to solve polynomials with Ehrlich-Aberth method and have roots which except the circle of unit, represented by the radius $r$ evaluated as:
+
+\begin{equation}
+\label{R.EL}
+R = exp(log(DBL\_MAX)/(2*n) );
+\end{equation}
+
+
+%\begin{equation}
+
+%R = \exp( \log(DBL\_MAX) / (2*n) )
+%\end{equation}
+ where \verb=DBL_MAX= stands for the maximum representable \verb=double= value.
+
+This problem was discussed earlier in~\cite{Karimall98} for the Durand-Kerner method. The authors
+propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. Using the logarithm and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}.
+