From: couturie Date: Wed, 13 Jan 2016 09:25:57 +0000 (+0100) Subject: modif X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper2.git/commitdiff_plain/3579d2fc9e528a19506994328a257a6bce22c702?ds=sidebyside;hp=369ec1155d40a2375303ba29bfb493136cf7b944 modif --- diff --git a/paper.tex b/paper.tex index 9c918b8..c0d93ab 100644 --- a/paper.tex +++ b/paper.tex @@ -326,6 +326,8 @@ \usepackage[textsize=footnotesize]{todonotes} \newcommand{\LZK}[2][inline]{% \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace} +\newcommand{\RC}[2][inline]{% + \todo[color=blue!10,#1]{\sffamily\textbf{RC:} #2}\xspace} @@ -399,9 +401,17 @@ Fax: (888) 555--1212}} % As a general rule, do not put math, special symbols or citations % in the abstract \begin{abstract} -\LZK{J'ai un peu modifié l'abstract. Sinon à revoir pour le degré max des polynômes après les tests de raph.} -Finding roots of polynomials is a very important part of solving real-life problems but it is not so easy for polynomials of high degrees. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices to find roots of polynomials of degree up-to 1.4 billion. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming. -\LZK{Je n'ai pas bien saisi la dernière phrase.} +Finding roots of polynomials is a very important part of solving +real-life problems but it is not so easy for polynomials of high +degrees. In this paper, we present two different parallel algorithms +of the Ehrlich-Aberth method to find roots of sparse and fully defined +polynomials of high degrees. Both algorithms are based on CUDA +technology to be implemented on multi-GPU computing platforms but each +using different parallel paradigms: OpenMP or MPI. The experiments +show a quasi-linear speedup by using up-to 4 GPU devices compared to 1 +GPU to find roots of polynomials of degree up-to 1.4 +million. Moreover, other experiments show it is possible to find roots +of polynomials of degree up to 5 millions. \end{abstract} % no keywords @@ -433,17 +443,17 @@ Finding roots of polynomials is a very important part of solving real-life probl Finding roots of polynomials of very high degrees arises in many complex problems in various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form: \begin{equation} -p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},a_0\neq 0. +p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},a_n\neq 0. \end{equation} where $\{a_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $a_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as : \begin{equation} p(x)=a_n\displaystyle\prod_{i=1}^n(x-z_i), a_n\neq 0. \end{equation} -\LZK{Pourquoi $a_0a_n\neq 0$ ?: $a_0$ pour la premiere equation et $a_n$ pour la deuxieme equation } +%\LZK{Pourquoi $a_0a_n\neq 0$ ?: $a_0$ pour la premiere equation et $a_n$ pour la deuxieme equation } %The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase} Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are Durand-Kerner method~\cite{Durand60,Kerner66} and Ehrlich-Aberth method~\cite{Ehrlich67,Aberth73}. -\LZK{Pouvez-vous donner des références pour les deux méthodes?, c'est fait} +%\LZK{Pouvez-vous donner des références pour les deux méthodes?, c'est fait} %The first method of this group is Durand-Kerner method: %\begin{equation} @@ -462,7 +472,31 @@ Most of the numerical methods that deal with the polynomial root-finding problem %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence. -The main problem of the simultaneous methods is that the necessary time needed for the convergence increases with the increasing of the polynomial's degree. Many authors have treated the problem of implementing simultaneous methods in parallel. Freeman~\cite{Freeman89} implemented and compared Durand-Kerner method, Ehrlich-Aberth method and another method of the fourth order of convergence proposed by Farmer and Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83} often diverges, but the first two methods (Durand-Kerner and Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman and Bane~\cite{Freemanall90} considered asynchronous algorithms in which each processor continues to update its approximations even though the latest values of other approximations $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods of parallelization for a shared memory architecture with OpenMP and for a distributed memory one with MPI. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with OpenMP and 135 seconds with MPI only by using 8 personal computers and 2 communications per iteration. The authors showed an interesting speedup comparing to the sequential implementation which takes up-to 3,300 seconds to obtain same results. +The main problem of the simultaneous methods is that the necessary +time needed for the convergence increases with the increasing of the +polynomial's degree. Many authors have treated the problem of +implementing simultaneous methods in +parallel. Freeman~\cite{Freeman89} implemented and compared +Durand-Kerner method, Ehrlich-Aberth method and another method of the +fourth order of convergence proposed by Farmer and +Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials +of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83} +often diverges, but the first two methods (Durand-Kerner and +Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman +and Bane~\cite{Freemanall90} considered asynchronous algorithms in +which each processor continues to update its approximations even +though the latest values of other approximations $z^{k}_{i}$ have not +been received from the other processors, in contrast with synchronous +algorithms where it would wait those values before making a new +iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods +of parallelization for a shared memory architecture with OpenMP and +for a distributed memory one with MPI. They are able to compute the +roots of sparse polynomials of degree 10,000 in 116 seconds with +OpenMP and 135 seconds with MPI only by using 8 personal computers and +2 communications per iteration. \RC{si on donne des temps faut donner + le proc, comme c'est vieux à mon avis faut supprimer ca, votre avis?} The authors showed an interesting +speedup comparing to the sequential implementation which takes up-to +3,300 seconds to obtain same results. \LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP: Rep: c'est MPI seulement} Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.