From: zianekhodja Date: Sat, 16 Jan 2016 00:02:12 +0000 (+0100) Subject: relecture abstract, section I et section II X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper2.git/commitdiff_plain/b12ffe1a9023dfb1e6ae7647f1c84002f4bd0da6 relecture abstract, section I et section II --- diff --git a/paper.tex b/paper.tex index 25a169d..69d42ae 100644 --- a/paper.tex +++ b/paper.tex @@ -409,10 +409,11 @@ using different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices compared to 1 GPU to find roots of polynomials of degree up-to 1.4 million. Moreover, other experiments show it is possible to find roots -of polynomials of degree up to 5 millions. +of polynomials of degree up-to 5 millions. \end{abstract} % no keywords +\LZK{Faut pas mettre des keywords?} @@ -441,7 +442,7 @@ of polynomials of degree up to 5 millions. Finding roots of polynomials of very high degrees arises in many complex problems in various domains such as algebra, biology or physics. A polynomial $p(x)$ in $\mathbb{C}$ in one variable $x$ is an algebraic expression in $x$ of the form: \begin{equation} -p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},a_n\neq 0. +p(x) = \displaystyle\sum^n_{i=0}{a_ix^i},a_n\neq 0, \end{equation} where $\{a_i\}_{0\leq i\leq n}$ are complex coefficients and $n$ is a high integer number. If $a_n\neq0$ then $n$ is called the degree of the polynomial. The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called roots of $p(x)$. Let $\{z_i\}_{1\leq i\leq n}$ be the roots of polynomial $p(x)$, then $p(x)$ can be written as : \begin{equation} @@ -491,11 +492,11 @@ of parallelization for a shared memory architecture with OpenMP and for a distributed memory one with MPI. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with OpenMP and 135 seconds with MPI only by using 8 personal computers and -2 communications per iteration. \RC{si on donne des temps faut donner - le proc, comme c'est vieux à mon avis faut supprimer ca, votre avis?} The authors showed an interesting +2 communications per iteration. The authors showed an interesting speedup comparing to the sequential implementation which takes up-to 3,300 seconds to obtain same results. -\LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP: Rep: c'est MPI seulement} +\RC{si on donne des temps faut donner le proc, comme c'est vieux à mon avis faut supprimer ca, votre avis?} +\LZK{Supprimons ces détails et mettons une référence s'il y en a une} Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000. @@ -503,19 +504,22 @@ Very few work had been performed since then until the appearing of the Compute U %\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?} %\LZK{Les contributions ne sont pas définies !!} -In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA/MPI and CUDA/OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include: -\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres? the Ehrlich-Aberth have very good convergence and it is suitable to be implemented in parallel computers.} +%In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA-MPI and CUDA-OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include: +%\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres? the Ehrlich-Aberth have very good convergence and it is suitable to be implemented in parallel computers.} +In this paper we propose the parallelization of Ehrlich-Aberth method which has a good convergence and it is suitable to be implemented in parallel computers. We use two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA-MPI and CUDA-OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include: +\LZK{J'ai ajouté une phrase pour justifier notre choix de la méthode Ehrlich-Aberth. A revérifier.} \begin{itemize} - \item An improvements for the Ehrlich-Aberth method using the exponential logarithm in order to be able to solve sparse and full polynomial of degree up to 1, 000, 000.\RC{j'ai envie de virer ca, car c'est pas la nouveauté dans ce papier} - \item A parallel implementation of Ehrlich-Aberth method on single GPU with CUDA.\RC{idem} + %\item An improvements for the Ehrlich-Aberth method using the exponential logarithm in order to be able to solve sparse and full polynomial of degree up to 1, 000, 000.\RC{j'ai envie de virer ca, car c'est pas la nouveauté dans ce papier} + %\item A parallel implementation of Ehrlich-Aberth method on single GPU with CUDA.\RC{idem} \item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. -\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run. +\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. \end{itemize} -\LZK{Pas d'autres contributions possibles?: j'ai rajouté 2} +This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run. +\LZK{Pas d'autres contributions possibles? J'ai supprimé les deux premiers points proposés précédemment.} %This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.} -The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches. In section\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic. +The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on multiple GPUs using the OpenMP and MPI approaches. In section~\ref{sec5} we present our experiments and discuss them. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic. %\LZK{A revoir toute cette organization: je viens de la revoir} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -655,11 +659,11 @@ CUDA (Compute Unified Device Architecture) is a parallel computing architecture The Ehrlich-Aberth method is a simultaneous method~\cite{Aberth73} using the following iteration \begin{equation} \label{Eq:EA1} -EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}} -{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n +z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}} +{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,\ldots,n \end{equation} -This methods contains 4 steps. The first step consists of the initial +This method contains 4 steps. The first step consists of the initial approximations of all the roots of the polynomial. The second step initializes the solution vector $Z$ using the Guggenheimer method~\cite{Gugg86} to ensure the distinction of the initial vector