From b11842fb3e39552ecd202f80f19d4c50dfeae1b5 Mon Sep 17 00:00:00 2001 From: couturie Date: Tue, 19 Jan 2016 11:13:06 +0100 Subject: [PATCH] correct d'une ref --- mybibfile.bib | 33 ++++++++++++++++++--------------- paper.tex | 2 +- 2 files changed, 19 insertions(+), 16 deletions(-) diff --git a/mybibfile.bib b/mybibfile.bib index df998e7..42fdf77 100644 --- a/mybibfile.bib +++ b/mybibfile.bib @@ -1,7 +1,3 @@ -OpenMP Application Program Interface, 4th edition, July 2013. -URL: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf. - -Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996. @Book{Peter96, ALTauthor = {Peter Pacheco}, @@ -22,7 +18,7 @@ OPTannote = {•} @Article{openmp13, - title = "OpenMP Application Program Interface", + title = "{OpenMP} Application Program Interface", journal = "", volume = "", number = "", @@ -164,17 +160,24 @@ OPTannote = {•} pages = "673-681", year = "1990", author = "T.L. Freeman AND R.K. Brankin", -}x +} + + +@article{cs01:nj, +inhal = {no}, +author = {Couturier, Rapha\"el and Spies, Fran\c{c}ois}, +title = {Extraction de racines dans des polyn\^omes creux de degr\'e \'elev\'e}, +journal = {RSRCP (R\'eseaux et Syst\`emes R\'epartis, Calculateurs Parall\`eles), Num\'ero th\'ematique : Algorithmes it\'eratifs parall\`eles et distribu\'es}, +publisher = {Herm\`es}, +volume = 13, +number = 1, +pages = {67--81}, +year = 2001, + +} + + -@Article{Raphaelall01, - title = " Extraction de racines dans des polynômes creux de degrées élevés. {RSRCP} (Réseaux et Systèmes Répartis, Calculateurs Parallèles)", - journal = " Algorithmes itératifs paralléles et distribués", - volume = "1", - number = "13", - pages = "67-81", - year = "1990", - author = "R. Couturier AND F. Spies", -}x @Article{Ostrowski41, title = " On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations. A.M.S.", diff --git a/paper.tex b/paper.tex index 0be1e08..e932a3c 100644 --- a/paper.tex +++ b/paper.tex @@ -88,7 +88,7 @@ which each processor continues to update its approximations even though the latest values of other approximations $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new -iteration. Couturier and al.~\cite{Raphaelall01} proposed two methods +iteration. Couturier and al.~\cite{cs01:nj} proposed two methods of parallelization for a shared memory architecture with OpenMP and for a distributed memory one with MPI. They are able to compute the roots of sparse polynomials of degree 10,000. The authors showed an interesting -- 2.39.5