]> AND Private Git Repository - loba-papers.git/blob - supercomp11/supercomp11.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
741aa267d9a0e7ab788f9932f3824d469cd36169
[loba-papers.git] / supercomp11 / supercomp11.tex
1 \documentclass[smallextended]{svjour3}
2 \usepackage[utf8]{inputenc}
3 \usepackage[T1]{fontenc}
4 \usepackage{mathptmx}
5 \usepackage{amsmath}
6 \usepackage{courier}
7 \usepackage{graphicx}
8 \usepackage{url}
9 \usepackage[ruled,lined]{algorithm2e}
10
11 \newcommand{\abs}[1]{\lvert#1\rvert} % \abs{x} -> |x|
12
13 \newenvironment{algodata}{%
14   \begin{tabular}[t]{@{}l@{:~}l@{}}}{%
15   \end{tabular}}
16
17 \newcommand{\FIXMEmargin}[1]{%
18   \marginpar{\textbf{[FIXME]} {\footnotesize #1}}}
19 \newcommand{\FIXME}[2][]{%
20   \ifx #2\relax\relax \FIXMEmargin{#1}%
21   \else \textbf{$\triangleright$\FIXMEmargin{#1}~#2}\fi}
22
23 \newcommand{\VAR}[1]{\textit{#1}}
24
25 \begin{document}
26
27 \title{Best effort strategy and virtual load
28   for asynchronous iterative load balancing}
29
30 \author{Raphaël Couturier \and
31         Arnaud Giersch
32 }
33
34 \institute{R. Couturier \and A. Giersch \at
35               FEMTO-ST, University of Franche-Comté, Belfort, France \\
36               % Tel.: +123-45-678910\\
37               % Fax: +123-45-678910\\
38               \email{%
39                 raphael.couturier@femto-st.fr,
40                 arnaud.giersch@femto-st.fr}
41 }
42
43 \maketitle
44
45
46 \begin{abstract}
47
48 Most of the  time, asynchronous load balancing algorithms  have extensively been
49 studied in a theoretical point  of view. The Bertsekas and Tsitsiklis'
50 algorithm~\cite[section~7.4]{bertsekas+tsitsiklis.1997.parallel}
51 is certainly  the most well known  algorithm for which the  convergence proof is
52 given. From a  practical point of view, when  a node wants to balance  a part of
53 its  load to some  of its  neighbors, the  strategy is  not described.   In this
54 paper, we propose a strategy  called \emph{best effort} which tries to balance
55 the load of a node to all  its less loaded neighbors while ensuring that all the
56 nodes  concerned by  the load  balancing  phase have  the same  amount of  load.
57 Moreover,  asynchronous  iterative  algorithms  in which  an  asynchronous  load
58 balancing  algorithm is  implemented most  of the  time can  dissociate messages
59 concerning load transfers and message  concerning load information.  In order to
60 increase  the  converge of  a  load balancing  algorithm,  we  propose a  simple
61 heuristic called \emph{virtual load} which allows a node that receives a load
62 information message  to integrate the  load that it  will receive later  in its
63 load (virtually) and consequently sends a (real) part of its load to some of its
64 neighbors.  In order to  validate our  approaches, we  have defined  a simulator
65 based on SimGrid which allowed us to conduct many experiments.
66
67
68 \end{abstract}
69
70 \section{Introduction}
71
72 Load  balancing algorithms  are  extensively used  in  parallel and  distributed
73 applications in  order to  reduce the  execution times. They  can be  applied in
74 different scientific  fields from high  performance computation to  micro sensor
75 networks.   They are  iterative by  nature.  In  literature many  kinds  of load
76 balancing  algorithms  have been  studied.   They  can  be classified  according
77 different  criteria:   centralized  or  decentralized,  in   static  or  dynamic
78 environment,  with  homogeneous  or  heterogeneous load,  using  synchronous  or
79 asynchronous iterations, with  a static topology or a  dynamic one which evolves
80 during time.  In  this work, we focus on  asynchronous load balancing algorithms
81 where computer nodes  are considered homogeneous and with  homogeneous load with
82 no external  load. In  this context, Bertsekas  and Tsitsiklis have  proposed an
83 algorithm which is definitively a reference  for many works. In their work, they
84 proved that under classical  hypotheses of asynchronous iterative algorithms and
85 a  special  constraint   avoiding  \emph{ping-pong}  effect,  an  asynchronous
86 iterative algorithm  converge to  the uniform load  distribution. This  work has
87 been extended by many authors. For example, Cortés et al., with
88 DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
89 version working with integer load.  This work was later generalized by
90 the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
91 \FIXME{Rajouter des choses ici.}
92
93 Although  the Bertsekas  and Tsitsiklis'  algorithm describes  the  condition to
94 ensure the convergence,  there is no indication or  strategy to really implement
95 the load distribution. In other word, a node  can send a part of its load to one
96 or   many  of   its  neighbors   while  all   the  convergence   conditions  are
97 followed. Consequently,  we propose a  new strategy called  \emph{best effort}
98 that tries to balance the load of  a node to all its less loaded neighbors while
99 ensuring that all the nodes concerned  by the load balancing phase have the same
100 amount of  load.  Moreover, when real asynchronous  applications are considered,
101 using  asynchronous   load  balancing   algorithms  can  reduce   the  execution
102 times. Most of the times, it is simpler to distinguish load information messages
103 from  data  migration  messages.  Former  ones  allows  a  node to  inform  its
104 neighbors of its  current load. These messages are very small,  they can be sent
105 quite often.  For example, if an  computing iteration takes  a significant times
106 (ranging from seconds to minutes), it is possible to send a new load information
107 message at each  neighbor at each iteration. Latter  messages contains data that
108 migrates from one node to another one. Depending on the application, it may have
109 sense or not  that nodes try to balance  a part of their load  at each computing
110 iteration. But the time to transfer a load message from a node to another one is
111 often much more longer that to  time to transfer a load information message. So,
112 when a node receives the information  that later it will receive a data message,
113 it can take this information into account  and it can consider that its new load
114 is larger.   Consequently, it can  send a part  of it real  load to some  of its
115 neighbors if required. We call this trick the \emph{virtual load} mechanism.
116
117
118
119 So, in  this work, we propose a  new strategy for improving  the distribution of
120 the  load  and  a  simple  but  efficient trick  that  also  improves  the  load
121 balancing. Moreover, we have conducted  many simulations with SimGrid in order to
122 validate our improvements are really efficient. Our simulations consider that in
123 order  to send a  message, a  latency delays  the sending  and according  to the
124 network  performance and  the message  size, the  time of  the reception  of the
125 message also varies.
126
127 In the following of this paper, Section~\ref{BT algo} describes the Bertsekas
128 and Tsitsiklis' asynchronous load balancing algorithm. Moreover, we present a
129 possible problem in the convergence conditions.  Section~\ref{Best-effort}
130 presents the best effort strategy which provides an efficient way to reduce the
131 execution times.  This strategy will be compared with other ones, presented in
132 Section~\ref{Other}.  In Section~\ref{Virtual load}, the virtual load mechanism
133 is proposed.  Simulations allowed to show that both our approaches are valid
134 using a quite realistic model detailed in Section~\ref{Simulations}.  Finally we
135 give a conclusion and some perspectives to this work.
136
137
138
139 \section{Bertsekas  and Tsitsiklis' asynchronous load balancing algorithm}
140 \label{BT algo}
141
142 In  order  prove  the  convergence  of  asynchronous  iterative  load  balancing
143 Bertsekas         and        Tsitsiklis         proposed         a        model
144 in~\cite{bertsekas+tsitsiklis.1997.parallel}.   Here we  recall  some notations.
145 Consider  that  $N={1,...,n}$  processors   are  connected  through  a  network.
146 Communication links  are represented by  a connected undirected  graph $G=(N,V)$
147 where $V$ is the set of links connecting different processors. In this work, we
148 consider that  processors are  homogeneous for sake  of simplicity. It  is quite
149 easy to tackle the  heterogeneous case~\cite{ElsMonPre02}. Load of processor $i$
150 at  time $t$  is  represented  by $x_i(t)\geq  0$.   Let $V(i)$  be  the set  of
151 neighbors of processor  $i$.  Each processor $i$ has an estimate  of the load of
152 each  of its  neighbors $j  \in V(i)$  represented by  $x_j^i(t)$.  According to
153 asynchronism and communication  delays, this estimate may be  outdated.  We also
154 consider that the load is described by a continuous variable.
155
156 When a processor  send a part of its  load to one or some of  its neighbors, the
157 transfer takes time to be completed.  Let $s_{ij}(t)$ be the amount of load that
158 processor $i$ has transferred to processor $j$ at time $t$ and let $r_{ij}(t)$ be the
159 amount of  load received by processor $j$  from processor $i$ at  time $t$. Then
160 the amount of load of processor $i$ at time $t+1$ is given by:
161 \begin{equation}
162 x_i(t+1)=x_i(t)-\sum_{j\in V(i)} s_{ij}(t) + \sum_{j\in V(i)} r_{ji}(t)
163 \label{eq:ping-pong}
164 \end{equation}
165
166
167 Some  conditions are  required to  ensure the  convergence. One  of them  can be
168 called the \emph{ping-pong} condition which specifies that:
169 \begin{equation}
170 x_i(t)-\sum _{k\in V(i)} s_{ik}(t) \geq x_j^i(t)+s_{ij}(t)
171 \end{equation}
172 for any  processor $i$ and any  $j \in V(i)$ such  that $x_i(t)>x_j^i(t)$.  This
173 condition aims  at avoiding a processor  to send a  part of its load  and being
174 less loaded after that.
175
176 Nevertheless,  we  think that  this  condition may  lead  to  deadlocks in  some
177 cases. For example, if we consider  only three processors and that processor $1$
178 is linked to processor $2$ which is  also linked to processor $3$ (i.e. a simple
179 chain which 3 processors). Now consider we have the following values at time $t$:
180 \begin{eqnarray*}
181 x_1(t)=10   \\
182 x_2(t)=100   \\
183 x_3(t)=99.99\\
184  x_3^2(t)=99.99\\
185 \end{eqnarray*}
186 In this case, processor $2$ can  either sends load to processor $1$ or processor
187 $3$.   If  it  sends  load  to  processor $1$  it  will  not  satisfy  condition
188 (\ref{eq:ping-pong})  because  after the  sending  it  will  be less  loaded  that
189 $x_3^2(t)$.  So we consider that the \emph{ping-pong} condition is probably to
190 strong. Currently, we did not try to make another convergence proof without this
191 condition or with a weaker condition.
192 %
193 \FIXME{Develop: We have the feeling that such a weaker condition
194   exists, because (it's not a proof, but) we have never seen any
195   scenario that is not leading to convergence, even with LB-strategies
196   that are not fulfilling these two conditions.}
197
198 \section{Best effort strategy}
199 \label{Best-effort}
200
201 In this section we describe a new load-balancing strategy that we call
202 \emph{best effort}.  First, we explain the general idea behind this strategy,
203 and then we describe some variants of this basic strategy.
204
205 \subsection{Basic strategy}
206
207 The general idea behind the \emph{best effort} strategy is that each processor,
208 that detects it has more load than some of its neighbors, sends some load to the
209 most of its less loaded neighbors, doing its best to reach the equilibrium
210 between those neighbors and himself.
211
212 More precisely, when a processor $i$ is in its load-balancing phase,
213 he proceeds as following.
214 \begin{enumerate}
215 \item First, the neighbors are sorted in non-decreasing order of their
216   known loads $x^i_j(t)$.
217
218 \item Then, this sorted list is traversed in order to find its largest
219   prefix such as the load of each selected neighbor is lesser than:
220   \begin{itemize}
221   \item the processor's own load, and
222   \item the mean of the loads of the selected neighbors and of the
223     processor's load.
224   \end{itemize}
225   Let's call $S_i(t)$ the set of the selected neighbors, and
226   $\bar{x}(t)$ the mean of the loads of the selected neighbors and of
227   the processor load:
228   \begin{equation*}
229     \bar{x}(t) = \frac{1}{\abs{S_i(t)} + 1}
230       \left( x_i(t) + \sum_{j\in S_i(t)} x^i_j(t) \right)
231   \end{equation*}
232   The following properties hold:
233   \begin{equation*}
234     \begin{cases}
235       S_i(t) \subset V(i) \\
236       x^i_j(t) < x_i(t) & \forall j \in S_i(t) \\
237       x^i_j(t) < \bar{x} & \forall j \in S_i(t) \\
238       x^i_j(t) \leq x^i_k(t) & \forall j \in S_i(t), \forall k \in V(i) \setminus S_i(t) \\
239       \bar{x} \leq x_i(t)
240     \end{cases}
241   \end{equation*}
242
243 \item Once this selection is completed, processor $i$ sends to each of
244   the selected neighbor $j\in S_i(t)$ an amount of load $s_{ij}(t) =
245   \bar{x} - x^i_j(t)$.
246
247   From the above equations, and notably from the definition of
248   $\bar{x}$, it can easily be verified that:
249   \begin{equation*}
250     \begin{cases}
251       x_i(t) - \sum_{j\in S_i(t)} s_{ij}(t) = \bar{x} \\
252       x^i_j(t) + s_{ij}(t) = \bar{x} & \forall j \in S_i(t)
253     \end{cases}
254   \end{equation*}
255 \end{enumerate}
256
257 \subsection{Leveling the amount to send}
258
259 With the aforementioned basic strategy, each node does its best to reach the
260 equilibrium with its neighbors.  Since each node may be taking the same kind of
261 decision at the same moment, there is the risk that a node receives load from
262 several of its neighbors, and then is temporary going off the equilibrium state.
263 This is particularly true with strongly connected applications.
264
265 In order to reduce this effect, we add the ability to level the amount to send.
266 The idea, here, is to make smaller steps toward the equilibrium, such that a
267 potentially wrong decision has a lower impact.
268
269 Concretely, once $s_{ij}$ has been evaluated as before, it is simply divided by
270 some configurable factor.  That's what we named the ``parameter $k$'' in
271 Section~\ref{Results}.  The amount of data to send is then $s_{ij}(t) = (\bar{x}
272 - x^i_j(t))/k$.
273 \FIXME[check that it's still named $k$ in Sec.~\ref{Results}]{}
274
275 \section{Other strategies}
276 \label{Other}
277
278 Another load balancing strategy, working under the same conditions, was
279 previously developed by Bahi, Giersch, and Makhoul in
280 \cite{bahi+giersch+makhoul.2008.scalable}.  In order to assess the performances
281 of the new \emph{best effort}, we naturally chose to compare it to this anterior
282 work.  More precisely, we will use the algorithm~2 from
283 \cite{bahi+giersch+makhoul.2008.scalable} and, in the following, we will
284 reference it under the name of Makhoul's.
285
286 Here is an outline of the Makhoul's algorithm.  When a given node needs to take
287 a load balancing decision, it starts by sorting its neighbors by increasing
288 order of their load.  Then, it computes the difference between its own load, and
289 the load of each of its neighbors.  Finally, taking the neighbors following the
290 order defined before, the amount of load to send $s_{ij}$ is computed as
291 $1/(N+1)$ of the load difference, with $N$ being the number of neighbors.  This
292 process continues as long as the node is more loaded than the considered
293 neighbor.
294
295
296 \section{Virtual load}
297 \label{Virtual load}
298
299 In this section,  we present the concept of \texttt{virtual  load}.  In order to
300 use this concept, load balancing messages must be sent using two different kinds
301 of  messages:  load information  messages  and  load  balancing messages.   More
302 precisely, a node  wanting to send a part  of its load to one  of its neighbors,
303 can first send  a load information message containing the load  it will send and
304 then it can send the load  balancing message containing data  to be transferred.
305 Load information  message are really  short, consequently they will  be received
306 very quickly.  In opposition, load  balancing messages are often bigger and thus
307 require more time to be transferred.
308
309 The  concept  of  \texttt{virtual load}  allows  a  node  that received  a  load
310 information message to integrate the load that it will receive later in its load
311 (virtually)  and consequently send  a (real)  part of  its load  to some  of its
312 neighbors. In fact,  a node that receives a load  information message knows that
313 later it  will receive the  corresponding load balancing message  containing the
314 corresponding data.  So  if this node detects it is too  loaded compared to some
315 of its neighbors  and if it has enough  load (real load), then it  can send more
316 load  to  some of  its  neighbors  without waiting  the  reception  of the  load
317 balancing message.
318
319 Doing  this, we  can  expect a  faster  convergence since  nodes  have a  faster
320 information of the load they will receive, so they can take in into account.
321
322 \FIXME{Est ce qu'on donne l'algo avec virtual load?}
323
324 \FIXME{describe integer mode}
325
326 \section{Simulations}
327 \label{Simulations}
328
329 In order to test and validate our approaches, we wrote a simulator
330 using the SimGrid
331 framework~\cite{casanova+legrand+quinson.2008.simgrid}.  This
332 simulator, which consists of about 2,700 lines of C++, allows to run
333 the different load-balancing strategies under various parameters, such
334 as the initial distribution of load, the interconnection topology, the
335 characteristics of the running platform, etc.  Then several metrics
336 are issued that permit to compare the strategies.
337
338 The simulation model is detailed in the next section (\ref{Sim
339   model}), and the experimental contexts are described in
340 section~\ref{Contexts}.  Then the results of the simulations are
341 presented in section~\ref{Results}.
342
343 \subsection{Simulation model}
344 \label{Sim model}
345
346 In the simulation model the processors exchange messages which are of
347 two kinds.  First, there are \emph{control messages} which only carry
348 information that is exchanged between the processors, such as the
349 current load, or the virtual load transfers if this option is
350 selected.  These messages are rather small, and their size is
351 constant.  Then, there are \emph{data messages} that carry the real
352 load transferred between the processors.  The size of a data message
353 is a function of the amount of load that it carries, and it can be
354 pretty large.  In order to receive the messages, each processor has
355 two receiving channels, one for each kind of messages.  Finally, when
356 a message is sent or received, this is done by using the non-blocking
357 primitives of SimGrid\footnote{That are \texttt{MSG\_task\_isend()},
358   and \texttt{MSG\_task\_irecv()}.}.
359
360 During the simulation, each processor concurrently runs three threads:
361 a \emph{receiving thread}, a \emph{computing thread}, and a
362 \emph{load-balancing thread}, which we will briefly describe now.
363
364 \paragraph{Receiving thread} The receiving thread is in charge of
365 waiting for messages to come, either on the control channel, or on the
366 data channel.  Its behavior is sketched by Algorithm~\ref{algo.recv}.
367 When a message is received, it is pushed in a buffer of
368 received message, to be later consumed by one of the other threads.
369 There are two such buffers, one for the control messages, and one for
370 the data messages.  The buffers are implemented with a lock-free FIFO
371 \cite{sutter.2008.writing} to avoid contention between the threads.
372
373 \begin{algorithm}
374   \caption{Receiving thread}
375   \label{algo.recv}
376   \KwData{
377     \begin{algodata}
378       \VAR{ctrl\_chan}, \VAR{data\_chan}
379       & communication channels (control and data) \\
380       \VAR{ctrl\_fifo}, \VAR{data\_fifo}
381       & buffers of received messages (control and data) \\
382     \end{algodata}}
383   \While{true}{%
384     wait for a message to be available on either \VAR{ctrl\_chan},
385     or \VAR{data\_chan}\;
386     \If{a message is available on \VAR{ctrl\_chan}}{%
387       get the message from \VAR{ctrl\_chan}, and push it into \VAR{ctrl\_fifo}\;
388     }
389     \If{a message is available on \VAR{data\_chan}}{%
390       get the message from \VAR{data\_chan}, and push it into \VAR{data\_fifo}\;
391     }
392   }
393 \end{algorithm}
394
395 \paragraph{Computing thread} The computing thread is in charge of the
396 real load management.  As exposed in Algorithm~\ref{algo.comp}, it
397 iteratively runs the following operations:
398 \begin{itemize}
399 \item if some load was received from the neighbors, get it;
400 \item if there is some load to send to the neighbors, send it;
401 \item run some computation, whose duration is function of the current
402   load of the processor.
403 \end{itemize}
404 Practically, after the computation, the computing thread waits for a
405 small amount of time if the iterations are looping too fast (for
406 example, when the current load is near zero).
407
408 \begin{algorithm}
409   \caption{Computing thread}
410   \label{algo.comp}
411   \KwData{
412     \begin{algodata}
413       \VAR{data\_fifo} & buffer of received data messages \\
414       \VAR{real\_load} & current load \\
415     \end{algodata}}
416   \While{true}{%
417     \If{\VAR{data\_fifo} is empty and $\VAR{real\_load} = 0$}{%
418       wait until a message is pushed into \VAR{data\_fifo}\;
419     }
420     \While{\VAR{data\_fifo} is not empty}{%
421       pop a message from \VAR{data\_fifo}\;
422       get the load embedded in the message, and add it to \VAR{real\_load}\;
423     }
424     \ForEach{neighbor $n$}{%
425       \If{there is some amount of load $a$ to send to $n$}{%
426         send $a$ units of load to $n$, and subtract it from \VAR{real\_load}\;
427       }
428     }
429     \If{$\VAR{real\_load} > 0.0$}{
430       simulate some computation, whose duration is function of \VAR{real\_load}\;
431       ensure that the main loop does not iterate too fast\;
432     }
433   }
434 \end{algorithm}
435
436 \paragraph{Load-balancing thread} The load-balancing thread is in
437 charge of running the load-balancing algorithm, and exchange the
438 control messages.  As shown in Algorithm~\ref{algo.lb}, it iteratively
439 runs the following operations:
440 \begin{itemize}
441 \item get the control messages that were received from the neighbors;
442 \item run the load-balancing algorithm;
443 \item send control messages to the neighbors, to inform them of the
444   processor's current load, and possibly of virtual load transfers;
445 \item wait a minimum (configurable) amount of time, to avoid to
446   iterate too fast.
447 \end{itemize}
448
449 \begin{algorithm}
450   \caption{Load-balancing}
451   \label{algo.lb}
452   \While{true}{%
453     \While{\VAR{ctrl\_fifo} is not empty}{%
454       pop a message from \VAR{ctrl\_fifo}\;
455       identify the sender of the message,
456       and update the current knowledge of its load\;
457     }
458     run the load-balancing algorithm to make the decision about load transfers\;
459     \ForEach{neighbor $n$}{%
460       send a control messages to $n$\;
461     }
462     ensure that the main loop does not iterate too fast\;
463   }
464 \end{algorithm}
465
466 \paragraph{}
467 For the sake of simplicity, a few details were voluntary omitted from
468 these descriptions.  For an exhaustive presentation, we refer to the
469 actual source code that was used for the experiments%
470 \footnote{As mentioned before, our simulator relies on the SimGrid
471   framework~\cite{casanova+legrand+quinson.2008.simgrid}.  For the
472   experiments, we used a pre-release of SimGrid 3.7 (Git commit
473   67d62fca5bdee96f590c942b50021cdde5ce0c07, available from
474   \url{https://gforge.inria.fr/scm/?group_id=12})}, and which is
475 available at
476 \url{http://info.iut-bm.univ-fcomte.fr/staff/giersch/software/loba.tar.gz}.
477
478 \FIXME{ajouter des détails sur la gestion de la charge virtuelle ?}
479
480 \subsection{Experimental contexts}
481 \label{Contexts}
482
483 In order to assess the performances of our algorithms, we ran our
484 simulator with various parameters, and extracted several metrics, that
485 we will describe in this section.
486
487 \paragraph{Load balancing strategies}
488
489 Several load balancing strategies were compared.  We ran the experiments with
490 the \emph{Best effort}, and with the \emph{Makhoul} strategies.  \emph{Best
491   effort} was tested with parameter $k = 1$, $k = 2$, and $k = 4$.  Secondly,
492 each strategy was run in its two variants: with, and without the management of
493 \emph{virtual load}.  Finally, we tested each configuration with \emph{real},
494 and with \emph{integer} load.
495
496 To summarize the different load balancing strategies, we have:
497 \begin{description}
498 \item[\textbf{strategies:}] \emph{Makhoul}, or \emph{Best effort} with $k\in
499   \{1,2,4\}$
500 \item[\textbf{variants:}] with, or without virtual load
501 \item[\textbf{domain:}] real load, or integer load
502 \end{description}
503 %
504 This gives us as many as $4\times 2\times 2 = 16$ different strategies.
505
506 \paragraph{End of the simulation}
507
508 The simulations were run until the load was nearly balanced among the
509 participating nodes.  More precisely the simulation stops when each node holds
510 an amount of load at less than 1\% of the load average, during an arbitrary
511 number of computing iterations (2000 in our case).
512
513 Note that this convergence detection was implemented in a centralized manner.
514 This is easy to do within the simulator, but it's obviously not realistic.  In a
515 real application we would have chosen a decentralized convergence detection
516 algorithm, like the one described by Bahi, Contassot-Vivier, Couturier, and
517 Vernier in \cite{10.1109/TPDS.2005.2}.
518
519 \paragraph{Platforms}
520
521 In order to show the behavior of the different strategies in different
522 settings, we simulated the executions on two sorts of platforms.  These two
523 sorts of platforms differ by their underlaid network topology.  On the one hand,
524 we have homogeneous platforms, modeled as a cluster.  On the other hand, we have
525 heterogeneous platforms, modeled as the interconnection of a number of clusters.
526
527 The clusters were modeled by a fixed number of computing nodes interconnected
528 through a backbone link.  Each computing node has a computing power of
529 1~GFlop/s, and is connected to the backbone by a network link whose bandwidth is
530 of 125~MB/s, with a latency of 50~$\mu$s.  The backbone has a network bandwidth
531 of 2.25~GB/s, with a latency of 500~$\mu$s.
532
533 The heterogeneous platform descriptions were created by taking a subset of the
534 Grid'5000 infrastructure\footnote{Grid'5000 is a French large scale experimental
535   Grid (see \url{https://www.grid5000.fr/}).}, as described in the platform file
536 \texttt{g5k.xml} distributed with SimGrid.  Note that the heterogeneity of the
537 platform here only comes from the network topology.  Indeed, since our
538 algorithms currently do not handle heterogeneous computing resources, the
539 processor speeds were normalized, and we arbitrarily chose to fix them to
540 1~GFlop/s.
541
542 Then we derived each sort of platform with four different number of computing
543 nodes: 16, 64, 256, and 1024 nodes.
544
545 \paragraph{Configurations}
546
547 The distributed processes of the application were then logically organized along
548 three possible topologies: a line, a torus or an hypercube.  We ran tests where
549 the total load was initially on an only node (at one end for the line topology),
550 and other tests where the load was initially randomly distributed across all the
551 participating nodes.  The total amount of load was fixed to a number of load
552 units equal to 1000 times the number of node.  The average load is then of 1000
553 load units.
554
555 For each of the preceding configuration, we finally had to choose the
556 computation and communication costs of a load unit.  We chose them, such as to
557 have three different computation over communication cost ratios, and hence model
558 three different kinds of applications:
559 \begin{itemize}
560 \item mainly communicating, with a computation/communication cost ratio of $1/10$;
561 \item mainly computing, with a computation/communication cost ratio of $10/1$ ;
562 \item balanced, with a computation/communication cost ratio of $1/1$.
563 \end{itemize}
564
565 To summarize the various configurations, we have:
566 \begin{description}
567 \item[\textbf{platforms:}] homogeneous (cluster), or heterogeneous (subset of
568   Grid'5000)
569 \item[\textbf{platform sizes:}] platforms with 16, 64, 256, or 1024 nodes
570 \item[\textbf{process topologies:}] line, torus, or hypercube
571 \item[\textbf{initial load distribution:}] initially on a only node, or
572   initially randomly distributed over all nodes
573 \item[\textbf{computation/communication ratio:}] $10/1$, $1/1$, or $1/10$
574 \end{description}
575 %
576 This gives us as many as $2\times 4\times 3\times 2\times 3 = 144$ different
577 configurations.
578 %
579 Combined with the various load balancing strategies, we had $16\times 144 =
580 2304$ distinct settings to evaluate.  In fact, as it will be shown later, we
581 didn't run all the strategies, nor all the configurations for the bigger
582 platforms with 1024 nodes, since to simulations would have run for a too long
583 time.
584
585 Anyway, all these the experiments represent more than 240 hours of computing
586 time.
587
588 \paragraph{Metrics}
589
590 In order to evaluate and compare the different load balancing strategies we had
591 to define several metrics.  Our goal, when choosing these metrics, was to have
592 something tending to a constant value, i.e. to have a measure which is not
593 changing anymore once the convergence state is reached.  Moreover, we wanted to
594 have some normalized value, in order to be able to compare them across different
595 settings.
596
597 With these constraints in mind, we defined the following metrics:
598 %
599 \begin{description}
600 \item[\textbf{average idle time:}] that's the total time spent, when the nodes
601   don't hold any share of load, and thus have nothing to compute.  This total
602   time is divided by the number of participating nodes, such as to have a number
603   that can be compared between simulations of different sizes.
604
605   This metric is expected to give an idea of the ability of the strategy to
606   diffuse the load quickly.  A smaller value is better.
607
608 \item[\textbf{average convergence date:}] that's the average of the dates when
609   all nodes reached the convergence state.  The dates are measured as a number
610   of (simulated) seconds since the beginning of the simulation.
611
612 \item[\textbf{maximum convergence date:}] that's the date when the last node
613   reached the convergence state.
614
615   These two dates give an idea of the time needed by the strategy to reach the
616   equilibrium state.  A smaller value is better.
617
618 \item[\textbf{data transfer amount:}] that's the sum of the amount of all data
619   transfers during the simulation.  This sum is then normalized by dividing it
620   by the total amount of data present in the system.
621
622   This metric is expected to give an idea of the efficiency of the strategy in
623   terms of data movements, i.e. its ability to reach the equilibrium with fewer
624   transfers.  Again, a smaller value is better.
625
626 \end{description}
627
628
629 \subsection{Validation of our approaches}
630 \label{Results}
631
632
633 On veut montrer quoi ? :
634
635 1) best plus rapide que les autres (simple, makhoul)
636 2) avantage virtual load
637
638 Est ce qu'on peut trouver des contre exemple?
639 Topologies variées
640
641
642 Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées
643 Mais aussi simulation avec temps court qui montre que seul best converge
644
645
646 Expés avec ratio calcul/comm rapide et lent
647
648 Quelques expés avec charge initiale aléatoire plutot que sur le premier proc
649
650 Cadre processeurs homogènes
651
652 Topologies statiques
653
654 On ne tient pas compte de la vitesse des liens donc on la considère homogène
655
656 Prendre un réseau hétérogène et rendre processeur homogène
657
658 Taille : 10 100 très gros
659
660 \section{Conclusion and perspectives}
661
662 \begin{acknowledgements}
663   Computations have been performed on the supercomputer facilities of
664   the Mésocentre de calcul de Franche-Comté.
665 \end{acknowledgements}
666
667 \bibliographystyle{spmpsci}
668 \bibliography{biblio}
669
670 \end{document}
671
672 %%% Local Variables:
673 %%% mode: latex
674 %%% TeX-master: t
675 %%% fill-column: 80
676 %%% ispell-local-dictionary: "american"
677 %%% End:
678
679 % LocalWords:  Raphaël Couturier Arnaud Giersch Abderrahmane Sider Franche ij
680 % LocalWords:  Bertsekas Tsitsiklis SimGrid DASUD Comté Béjaïa asynchronism ji
681 % LocalWords:  ik isend irecv Cortés et al chan ctrl fifo Makhoul GFlop xml