]> AND Private Git Repository - loba-papers.git/blob - loba-besteffort/loba-besteffort.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
d97c653be563ee1915ef68bb7ee074fa40bf5dd2
[loba-papers.git] / loba-besteffort / loba-besteffort.tex
1 \documentclass[preprint]{elsarticle}
2
3 \usepackage[utf8]{inputenc}
4 \usepackage[T1]{fontenc}
5
6 %\usepackage{newtxtext}
7 %\usepackage[cmintegrals]{newtxmath}
8 \usepackage{mathptmx,helvet,courier}
9
10 \usepackage{amsmath}
11 \usepackage{graphicx}
12 \usepackage{url}
13 \usepackage[ruled,lined]{algorithm2e}
14
15 %%% Remove this before submission
16 \newcommand{\FIXMEmargin}[1]{%
17   \marginpar{\textbf{[FIXME]} {\footnotesize #1}}}
18 \newcommand{\FIXME}[2][]{%
19   \ifx #2\relax\relax \FIXMEmargin{#1}%
20   \else \textbf{$\triangleright$\FIXMEmargin{#1}~#2}\fi}
21
22 \newcommand{\abs}[1]{\lvert#1\rvert} % \abs{x} -> |x|
23
24 \newenvironment{algodata}{%
25   \begin{tabular}[t]{@{}l@{:~}l@{}}}{%
26   \end{tabular}}
27
28 \newcommand{\VAR}[1]{\textit{#1}}
29
30 \begin{document}
31
32 \begin{frontmatter}
33
34 \journal{Parallel Computing}
35
36 \title{Best effort strategy and virtual load for\\
37   asynchronous iterative load balancing}
38
39 \author{Raphaël Couturier}
40 \ead{raphael.couturier@femto-st.fr}
41
42 \author{Arnaud Giersch\corref{cor}}
43 \ead{arnaud.giersch@femto-st.fr}
44
45 \address{FEMTO-ST, University of Franche-Comté\\
46  19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France}
47
48 \cortext[cor]{Corresponding author.}
49
50 \begin{abstract}
51   Most of the time, asynchronous load balancing algorithms have extensively been
52   studied in a theoretical point of view. The Bertsekas and Tsitsiklis'
53   algorithm~\cite[section~7.4]{bertsekas+tsitsiklis.1997.parallel} is certainly
54   the most well known algorithm for which the convergence proof is given. From a
55   practical point of view, when a node wants to balance a part of its load to
56   some of its neighbors, the strategy is not described.  In this paper, we
57   propose a strategy called \emph{best effort} which tries to balance the load
58   of a node to all its less loaded neighbors while ensuring that all the nodes
59   concerned by the load balancing phase have the same amount of load.  Moreover,
60   asynchronous iterative algorithms in which an asynchronous load balancing
61   algorithm is implemented most of the time can dissociate messages concerning
62   load transfers and message concerning load information.  In order to increase
63   the converge of a load balancing algorithm, we propose a simple heuristic
64   called \emph{virtual load} which allows a node that receives a load
65   information message to integrate the load that it will receive later in its
66   load (virtually) and consequently sends a (real) part of its load to some of
67   its neighbors.  In order to validate our approaches, we have defined a
68   simulator based on SimGrid which allowed us to conduct many experiments.
69 \end{abstract}
70
71 % \begin{keywords}
72 %   %% keywords here, in the form: keyword \sep keyword
73 % \end{keywords}
74
75 \end{frontmatter}
76
77 \section{Introduction}
78
79 Load  balancing algorithms  are  extensively used  in  parallel and  distributed
80 applications in  order to  reduce the  execution times. They  can be  applied in
81 different scientific  fields from high  performance computation to  micro sensor
82 networks.   They are  iterative by  nature.  In  literature many  kinds  of load
83 balancing  algorithms  have been  studied.   They  can  be classified  according
84 different  criteria:   centralized  or  decentralized,  in   static  or  dynamic
85 environment,  with  homogeneous  or  heterogeneous load,  using  synchronous  or
86 asynchronous iterations, with  a static topology or a  dynamic one which evolves
87 during time.  In  this work, we focus on  asynchronous load balancing algorithms
88 where computer nodes  are considered homogeneous and with  homogeneous load with
89 no external  load. In  this context, Bertsekas  and Tsitsiklis have  proposed an
90 algorithm which is definitively a reference  for many works. In their work, they
91 proved that under classical  hypotheses of asynchronous iterative algorithms and
92 a  special  constraint   avoiding  \emph{ping-pong}  effect,  an  asynchronous
93 iterative algorithm  converge to  the uniform load  distribution. This  work has
94 been extended by many authors. For example, Cortés et al., with
95 DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
96 version working with integer load.  This work was later generalized by
97 the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
98 \FIXME{Rajouter des choses ici.  Lesquelles ?}
99
100 Although  the Bertsekas  and Tsitsiklis'  algorithm describes  the  condition to
101 ensure the convergence,  there is no indication or  strategy to really implement
102 the load distribution. In other word, a node  can send a part of its load to one
103 or   many  of   its  neighbors   while  all   the  convergence   conditions  are
104 followed. Consequently,  we propose a  new strategy called  \emph{best effort}
105 that tries to balance the load of  a node to all its less loaded neighbors while
106 ensuring that all the nodes concerned  by the load balancing phase have the same
107 amount of  load.  Moreover, when real asynchronous  applications are considered,
108 using  asynchronous   load  balancing   algorithms  can  reduce   the  execution
109 times. Most of the times, it is simpler to distinguish load information messages
110 from  data  migration  messages.  Former  ones  allows  a  node to  inform  its
111 neighbors of its  current load. These messages are very small,  they can be sent
112 quite often.  For example, if an  computing iteration takes  a significant times
113 (ranging from seconds to minutes), it is possible to send a new load information
114 message at each  neighbor at each iteration. Latter  messages contains data that
115 migrates from one node to another one. Depending on the application, it may have
116 sense or not  that nodes try to balance  a part of their load  at each computing
117 iteration. But the time to transfer a load message from a node to another one is
118 often much more longer that to  time to transfer a load information message. So,
119 when a node receives the information  that later it will receive a data message,
120 it can take this information into account  and it can consider that its new load
121 is larger.   Consequently, it can  send a part  of it real  load to some  of its
122 neighbors if required. We call this trick the \emph{virtual load} mechanism.
123
124
125
126 So, in  this work, we propose a  new strategy for improving  the distribution of
127 the  load  and  a  simple  but  efficient trick  that  also  improves  the  load
128 balancing. Moreover, we have conducted  many simulations with SimGrid in order to
129 validate our improvements are really efficient. Our simulations consider that in
130 order  to send a  message, a  latency delays  the sending  and according  to the
131 network  performance and  the message  size, the  time of  the reception  of the
132 message also varies.
133
134 In the following of this paper, Section~\ref{sec.bt-algo} describes the
135 Bertsekas and Tsitsiklis' asynchronous load balancing algorithm. Moreover, we
136 present a possible problem in the convergence conditions.
137 Section~\ref{sec.besteffort} presents the best effort strategy which provides an
138 efficient way to reduce the execution times.  This strategy will be compared
139 with other ones, presented in Section~\ref{sec.other}.  In
140 Section~\ref{sec.virtual-load}, the virtual load mechanism is proposed.
141 Simulations allowed to show that both our approaches are valid using a quite
142 realistic model detailed in Section~\ref{sec.simulations}.  Finally we give a
143 conclusion and some perspectives to this work.
144
145
146
147 \section{Bertsekas  and Tsitsiklis' asynchronous load balancing algorithm}
148 \label{sec.bt-algo}
149
150 In  order  prove  the  convergence  of  asynchronous  iterative  load  balancing
151 Bertsekas         and        Tsitsiklis         proposed         a        model
152 in~\cite{bertsekas+tsitsiklis.1997.parallel}.   Here we  recall  some notations.
153 Consider  that  $N={1,...,n}$  processors   are  connected  through  a  network.
154 Communication links  are represented by  a connected undirected  graph $G=(N,V)$
155 where $V$ is the set of links connecting different processors. In this work, we
156 consider that  processors are  homogeneous for sake  of simplicity. It  is quite
157 easy to tackle the  heterogeneous case~\cite{ElsMonPre02}. Load of processor $i$
158 at  time $t$  is  represented  by $x_i(t)\geq  0$.   Let $V(i)$  be  the set  of
159 neighbors of processor  $i$.  Each processor $i$ has an estimate  of the load of
160 each  of its  neighbors $j  \in V(i)$  represented by  $x_j^i(t)$.  According to
161 asynchronism and communication  delays, this estimate may be  outdated.  We also
162 consider that the load is described by a continuous variable.
163
164 When a processor  send a part of its  load to one or some of  its neighbors, the
165 transfer takes time to be completed.  Let $s_{ij}(t)$ be the amount of load that
166 processor $i$ has transferred to processor $j$ at time $t$ and let $r_{ij}(t)$ be the
167 amount of  load received by processor $j$  from processor $i$ at  time $t$. Then
168 the amount of load of processor $i$ at time $t+1$ is given by:
169 \begin{equation}
170 x_i(t+1)=x_i(t)-\sum_{j\in V(i)} s_{ij}(t) + \sum_{j\in V(i)} r_{ji}(t)
171 \label{eq.ping-pong}
172 \end{equation}
173
174
175 Some  conditions are  required to  ensure the  convergence. One  of them  can be
176 called the \emph{ping-pong} condition which specifies that:
177 \begin{equation}
178 x_i(t)-\sum _{k\in V(i)} s_{ik}(t) \geq x_j^i(t)+s_{ij}(t)
179 \end{equation}
180 for any  processor $i$ and any  $j \in V(i)$ such  that $x_i(t)>x_j^i(t)$.  This
181 condition aims  at avoiding a processor  to send a  part of its load  and being
182 less loaded after that.
183
184 Nevertheless,  we  think that  this  condition may  lead  to  deadlocks in  some
185 cases. For example, if we consider  only three processors and that processor $1$
186 is linked to processor $2$ which is  also linked to processor $3$ (i.e. a simple
187 chain which 3 processors). Now consider we have the following values at time $t$:
188 \begin{eqnarray*}
189 x_1(t)=10   \\
190 x_2(t)=100   \\
191 x_3(t)=99.99\\
192  x_3^2(t)=99.99\\
193 \end{eqnarray*}
194 In this case, processor $2$ can either sends load to processor $1$ or processor
195 $3$.  If it sends load to processor $1$ it will not satisfy condition
196 (\ref{eq.ping-pong}) because after the sending it will be less loaded that
197 $x_3^2(t)$.  So we consider that the \emph{ping-pong} condition is probably to
198 strong. Currently, we did not try to make another convergence proof without this
199 condition or with a weaker condition.
200
201 Nevertheless, we conjecture that such a weaker condition exists.  In fact, we
202 have never seen any scenario that is not leading to convergence, even with
203 load-balancing strategies that are not exactly fulfilling these two conditions.
204
205 It may be the subject of future work to express weaker conditions, and to prove
206 that they are sufficient to ensure the convergence of the load-balancing
207 algorithm.
208
209 \section{Best effort strategy}
210 \label{sec.besteffort}
211
212 In this section we describe a new load-balancing strategy that we call
213 \emph{best effort}.  First, we explain the general idea behind this strategy,
214 and then we describe some variants of this basic strategy.
215
216 \subsection{Basic strategy}
217
218 The general idea behind the \emph{best effort} strategy is that each processor,
219 that detects it has more load than some of its neighbors, sends some load to the
220 most of its less loaded neighbors, doing its best to reach the equilibrium
221 between those neighbors and himself.
222
223 More precisely, when a processor $i$ is in its load-balancing phase,
224 he proceeds as following.
225 \begin{enumerate}
226 \item First, the neighbors are sorted in non-decreasing order of their
227   known loads $x^i_j(t)$.
228
229 \item Then, this sorted list is traversed in order to find its largest
230   prefix such as the load of each selected neighbor is lesser than:
231   \begin{itemize}
232   \item the processor's own load, and
233   \item the mean of the loads of the selected neighbors and of the
234     processor's load.
235   \end{itemize}
236   Let's call $S_i(t)$ the set of the selected neighbors, and
237   $\bar{x}(t)$ the mean of the loads of the selected neighbors and of
238   the processor load:
239   \begin{equation*}
240     \bar{x}(t) = \frac{1}{\abs{S_i(t)} + 1}
241       \left( x_i(t) + \sum_{j\in S_i(t)} x^i_j(t) \right)
242   \end{equation*}
243   The following properties hold:
244   \begin{equation*}
245     \begin{cases}
246       S_i(t) \subset V(i) \\
247       x^i_j(t) < x_i(t) & \forall j \in S_i(t) \\
248       x^i_j(t) < \bar{x} & \forall j \in S_i(t) \\
249       x^i_j(t) \leq x^i_k(t) & \forall j \in S_i(t), \forall k \in V(i) \setminus S_i(t) \\
250       \bar{x} \leq x_i(t)
251     \end{cases}
252   \end{equation*}
253
254 \item Once this selection is completed, processor $i$ sends to each of
255   the selected neighbor $j\in S_i(t)$ an amount of load $s_{ij}(t) =
256   \bar{x} - x^i_j(t)$.
257
258   From the above equations, and notably from the definition of
259   $\bar{x}$, it can easily be verified that:
260   \begin{equation*}
261     \begin{cases}
262       x_i(t) - \sum_{j\in S_i(t)} s_{ij}(t) = \bar{x} \\
263       x^i_j(t) + s_{ij}(t) = \bar{x} & \forall j \in S_i(t)
264     \end{cases}
265   \end{equation*}
266 \end{enumerate}
267
268 \subsection{Leveling the amount to send}
269
270 With the aforementioned basic strategy, each node does its best to reach the
271 equilibrium with its neighbors.  Since each node may be taking the same kind of
272 decision at the same moment, there is the risk that a node receives load from
273 several of its neighbors, and then is temporary going off the equilibrium state.
274 This is particularly true with strongly connected applications.
275
276 In order to reduce this effect, we add the ability to level the amount to send.
277 The idea, here, is to make smaller steps toward the equilibrium, such that a
278 potentially wrong decision has a lower impact.
279
280 Concretely, once $s_{ij}$ has been evaluated as before, it is simply divided by
281 some configurable factor.  That's what we named the ``parameter $k$'' in
282 Section~\ref{sec.results}.  The amount of data to send is then $s_{ij}(t) =
283 (\bar{x} - x^i_j(t))/k$.
284 \FIXME[check that it's still named $k$ in Sec.~\ref{sec.results}]{}
285
286 \section{Other strategies}
287 \label{sec.other}
288
289 Another load balancing strategy, working under the same conditions, was
290 previously developed by Bahi, Giersch, and Makhoul in
291 \cite{bahi+giersch+makhoul.2008.scalable}.  In order to assess the performances
292 of the new \emph{best effort}, we naturally chose to compare it to this anterior
293 work.  More precisely, we will use the algorithm~2 from
294 \cite{bahi+giersch+makhoul.2008.scalable} and, in the following, we will
295 reference it under the name of Makhoul's.
296
297 Here is an outline of the Makhoul's algorithm.  When a given node needs to take
298 a load balancing decision, it starts by sorting its neighbors by increasing
299 order of their load.  Then, it computes the difference between its own load, and
300 the load of each of its neighbors.  Finally, taking the neighbors following the
301 order defined before, the amount of load to send $s_{ij}$ is computed as
302 $1/(N+1)$ of the load difference, with $N$ being the number of neighbors.  This
303 process continues as long as the node is more loaded than the considered
304 neighbor.
305
306
307 \section{Virtual load}
308 \label{sec.virtual-load}
309
310 In this section,  we present the concept of \emph{virtual load}.  In order to
311 use this concept, load balancing messages must be sent using two different kinds
312 of  messages:  load information  messages  and  load  balancing messages.   More
313 precisely, a node  wanting to send a part  of its load to one  of its neighbors,
314 can first send  a load information message containing the load  it will send and
315 then it can send the load  balancing message containing data  to be transferred.
316 Load information  message are really  short, consequently they will  be received
317 very quickly.  In opposition, load  balancing messages are often bigger and thus
318 require more time to be transferred.
319
320 The  concept  of  \emph{virtual load}  allows  a  node  that received  a  load
321 information message to integrate the load that it will receive later in its load
322 (virtually)  and consequently send  a (real)  part of  its load  to some  of its
323 neighbors. In fact,  a node that receives a load  information message knows that
324 later it  will receive the  corresponding load balancing message  containing the
325 corresponding data.  So  if this node detects it is too  loaded compared to some
326 of its neighbors  and if it has enough  load (real load), then it  can send more
327 load  to  some of  its  neighbors  without waiting  the  reception  of the  load
328 balancing message.
329
330 Doing  this, we  can  expect a  faster  convergence since  nodes  have a  faster
331 information of the load they will receive, so they can take in into account.
332
333 \FIXME{Est ce qu'on donne l'algo avec virtual load?}
334
335 \FIXME{describe integer mode}
336
337 \section{Simulations}
338 \label{sec.simulations}
339
340 In order to test and validate our approaches, we wrote a simulator
341 using the SimGrid
342 framework~\cite{casanova+legrand+quinson.2008.simgrid}.  This
343 simulator, which consists of about 2,700 lines of C++, allows to run
344 the different load-balancing strategies under various parameters, such
345 as the initial distribution of load, the interconnection topology, the
346 characteristics of the running platform, etc.  Then several metrics
347 are issued that permit to compare the strategies.
348
349 The simulation model is detailed in the next section (\ref{sec.model}), and the
350 experimental contexts are described in section~\ref{sec.exp-context}.  Then the
351 results of the simulations are presented in section~\ref{sec.results}.
352
353 \subsection{Simulation model}
354 \label{sec.model}
355
356 In the simulation model the processors exchange messages which are of
357 two kinds.  First, there are \emph{control messages} which only carry
358 information that is exchanged between the processors, such as the
359 current load, or the virtual load transfers if this option is
360 selected.  These messages are rather small, and their size is
361 constant.  Then, there are \emph{data messages} that carry the real
362 load transferred between the processors.  The size of a data message
363 is a function of the amount of load that it carries, and it can be
364 pretty large.  In order to receive the messages, each processor has
365 two receiving channels, one for each kind of messages.  Finally, when
366 a message is sent or received, this is done by using the non-blocking
367 primitives of SimGrid\footnote{That are \texttt{MSG\_task\_isend()},
368   and \texttt{MSG\_task\_irecv()}.}.
369
370 During the simulation, each processor concurrently runs three threads:
371 a \emph{receiving thread}, a \emph{computing thread}, and a
372 \emph{load-balancing thread}, which we will briefly describe now.
373
374 For the sake of simplicity, a few details were voluntary omitted from
375 these descriptions.  For an exhaustive presentation, we refer to the
376 actual source code that was used for the experiments%
377 \footnote{As mentioned before, our simulator relies on the SimGrid
378   framework~\cite{casanova+legrand+quinson.2008.simgrid}.  For the
379   experiments, we used a pre-release of SimGrid 3.7 (Git commit
380   67d62fca5bdee96f590c942b50021cdde5ce0c07, available from
381   \url{https://gforge.inria.fr/scm/?group_id=12})}, and which is
382 available at
383 \url{http://info.iut-bm.univ-fcomte.fr/staff/giersch/software/loba.tar.gz}.
384
385 \subsubsection{Receiving thread}
386
387 The receiving thread is in charge of waiting for messages to come, either on the
388 control channel, or on the data channel.  Its behavior is sketched by
389 Algorithm~\ref{algo.recv}.  When a message is received, it is pushed in a buffer
390 of received message, to be later consumed by one of the other threads.  There
391 are two such buffers, one for the control messages, and one for the data
392 messages.  The buffers are implemented with a lock-free FIFO
393 \cite{sutter.2008.writing} to avoid contention between the threads.
394
395 \begin{algorithm}
396   \caption{Receiving thread}
397   \label{algo.recv}
398   \KwData{
399     \begin{algodata}
400       \VAR{ctrl\_chan}, \VAR{data\_chan}
401       & communication channels (control and data) \\
402       \VAR{ctrl\_fifo}, \VAR{data\_fifo}
403       & buffers of received messages (control and data) \\
404     \end{algodata}}
405   \While{true}{%
406     wait for a message to be available on either \VAR{ctrl\_chan},
407     or \VAR{data\_chan}\;
408     \If{a message is available on \VAR{ctrl\_chan}}{%
409       get the message from \VAR{ctrl\_chan}, and push it into \VAR{ctrl\_fifo}\;
410     }
411     \If{a message is available on \VAR{data\_chan}}{%
412       get the message from \VAR{data\_chan}, and push it into \VAR{data\_fifo}\;
413     }
414   }
415 \end{algorithm}
416
417 \subsubsection{Computing thread}
418
419 The computing thread is in charge of the real load management.  As exposed in
420 Algorithm~\ref{algo.comp}, it iteratively runs the following operations:
421 \begin{itemize}
422 \item if some load was received from the neighbors, get it;
423 \item if there is some load to send to the neighbors, send it;
424 \item run some computation, whose duration is function of the current
425   load of the processor.
426 \end{itemize}
427 Practically, after the computation, the computing thread waits for a
428 small amount of time if the iterations are looping too fast (for
429 example, when the current load is near zero).
430
431 \begin{algorithm}
432   \caption{Computing thread}
433   \label{algo.comp}
434   \KwData{
435     \begin{algodata}
436       \VAR{data\_fifo} & buffer of received data messages \\
437       \VAR{real\_load} & current load \\
438     \end{algodata}}
439   \While{true}{%
440     \If{\VAR{data\_fifo} is empty and $\VAR{real\_load} = 0$}{%
441       wait until a message is pushed into \VAR{data\_fifo}\;
442     }
443     \While{\VAR{data\_fifo} is not empty}{%
444       pop a message from \VAR{data\_fifo}\;
445       get the load embedded in the message, and add it to \VAR{real\_load}\;
446     }
447     \ForEach{neighbor $n$}{%
448       \If{there is some amount of load $a$ to send to $n$}{%
449         send $a$ units of load to $n$, and subtract it from \VAR{real\_load}\;
450       }
451     }
452     \If{$\VAR{real\_load} > 0.0$}{
453       simulate some computation, whose duration is function of \VAR{real\_load}\;
454       ensure that the main loop does not iterate too fast\;
455     }
456   }
457 \end{algorithm}
458
459 \subsubsection{Load-balancing thread}
460
461 The load-balancing thread is in charge of running the load-balancing algorithm,
462 and exchange the control messages.  As shown in Algorithm~\ref{algo.lb}, it
463 iteratively runs the following operations:
464 \begin{itemize}
465 \item get the control messages that were received from the neighbors;
466 \item run the load-balancing algorithm;
467 \item send control messages to the neighbors, to inform them of the
468   processor's current load, and possibly of virtual load transfers;
469 \item wait a minimum (configurable) amount of time, to avoid to
470   iterate too fast.
471 \end{itemize}
472
473 \begin{algorithm}
474   \caption{Load-balancing}
475   \label{algo.lb}
476   \While{true}{%
477     \While{\VAR{ctrl\_fifo} is not empty}{%
478       pop a message from \VAR{ctrl\_fifo}\;
479       identify the sender of the message,
480       and update the current knowledge of its load\;
481     }
482     run the load-balancing algorithm to make the decision about load transfers\;
483     \ForEach{neighbor $n$}{%
484       send a control messages to $n$\;
485     }
486     ensure that the main loop does not iterate too fast\;
487   }
488 \end{algorithm}
489
490 \paragraph{}\FIXME{ajouter des détails sur la gestion de la charge virtuelle ?
491   par ex, donner l'idée générale de l'implémentation.  l'idée générale est déja
492   décrite en section~\ref{sec.virtual-load}}
493
494 \subsection{Experimental contexts}
495 \label{sec.exp-context}
496
497 In order to assess the performances of our algorithms, we ran our
498 simulator with various parameters, and extracted several metrics, that
499 we will describe in this section.
500
501 \subsubsection{Load balancing strategies}
502
503 Several load balancing strategies were compared.  We ran the experiments with
504 the \emph{Best effort}, and with the \emph{Makhoul} strategies.  \emph{Best
505   effort} was tested with parameter $k = 1$, $k = 2$, and $k = 4$.  Secondly,
506 each strategy was run in its two variants: with, and without the management of
507 \emph{virtual load}.  Finally, we tested each configuration with \emph{real},
508 and with \emph{integer} load.
509
510 To summarize the different load balancing strategies, we have:
511 \begin{description}
512 \item[\textbf{strategies:}] \emph{Makhoul}, or \emph{Best effort} with $k\in
513   \{1,2,4\}$
514 \item[\textbf{variants:}] with, or without virtual load
515 \item[\textbf{domain:}] real load, or integer load
516 \end{description}
517 %
518 This gives us as many as $4\times 2\times 2 = 16$ different strategies.
519
520 \subsubsection{End of the simulation}
521
522 The simulations were run until the load was nearly balanced among the
523 participating nodes.  More precisely the simulation stops when each node holds
524 an amount of load at less than 1\% of the load average, during an arbitrary
525 number of computing iterations (2000 in our case).
526
527 Note that this convergence detection was implemented in a centralized manner.
528 This is easy to do within the simulator, but it's obviously not realistic.  In a
529 real application we would have chosen a decentralized convergence detection
530 algorithm, like the one described by Bahi, Contassot-Vivier, Couturier, and
531 Vernier in \cite{10.1109/TPDS.2005.2}.
532
533 \subsubsection{Platforms}
534
535 In order to show the behavior of the different strategies in different
536 settings, we simulated the executions on two sorts of platforms.  These two
537 sorts of platforms differ by their underlaid network topology.  On the one hand,
538 we have homogeneous platforms, modeled as a cluster.  On the other hand, we have
539 heterogeneous platforms, modeled as the interconnection of a number of clusters.
540
541 The clusters were modeled by a fixed number of computing nodes interconnected
542 through a backbone link.  Each computing node has a computing power of
543 1~GFlop/s, and is connected to the backbone by a network link whose bandwidth is
544 of 125~MB/s, with a latency of 50~$\mu$s.  The backbone has a network bandwidth
545 of 2.25~GB/s, with a latency of 500~$\mu$s.
546
547 The heterogeneous platform descriptions were created by taking a subset of the
548 Grid'5000 infrastructure\footnote{Grid'5000 is a French large scale experimental
549   Grid (see \url{https://www.grid5000.fr/}).}, as described in the platform file
550 \texttt{g5k.xml} distributed with SimGrid.  Note that the heterogeneity of the
551 platform here only comes from the network topology.  Indeed, since our
552 algorithms currently do not handle heterogeneous computing resources, the
553 processor speeds were normalized, and we arbitrarily chose to fix them to
554 1~GFlop/s.
555
556 Then we derived each sort of platform with four different number of computing
557 nodes: 16, 64, 256, and 1024 nodes.
558
559 \subsubsection{Configurations}
560
561 The distributed processes of the application were then logically organized along
562 three possible topologies: a line, a torus or an hypercube.  We ran tests where
563 the total load was initially on an only node (at one end for the line topology),
564 and other tests where the load was initially randomly distributed across all the
565 participating nodes.  The total amount of load was fixed to a number of load
566 units equal to 1000 times the number of node.  The average load is then of 1000
567 load units.
568
569 For each of the preceding configuration, we finally had to choose the
570 computation and communication costs of a load unit.  We chose them, such as to
571 have three different computation over communication cost ratios, and hence model
572 three different kinds of applications:
573 \begin{itemize}
574 \item mainly communicating, with a computation/communication cost ratio of $1/10$;
575 \item mainly computing, with a computation/communication cost ratio of $10/1$ ;
576 \item balanced, with a computation/communication cost ratio of $1/1$.
577 \end{itemize}
578
579 To summarize the various configurations, we have:
580 \begin{description}
581 \item[\textbf{platforms:}] homogeneous (cluster), or heterogeneous (subset of
582   Grid'5000)
583 \item[\textbf{platform sizes:}] platforms with 16, 64, 256, or 1024 nodes
584 \item[\textbf{process topologies:}] line, torus, or hypercube
585 \item[\textbf{initial load distribution:}] initially on a only node, or
586   initially randomly distributed over all nodes
587 \item[\textbf{computation/communication cost ratio:}] $10/1$, $1/1$, or $1/10$
588 \end{description}
589 %
590 This gives us as many as $2\times 4\times 3\times 2\times 3 = 144$ different
591 configurations.
592 %
593 Combined with the various load balancing strategies, we had $16\times 144 =
594 2304$ distinct settings to evaluate.  In fact, as it will be shown later, we
595 didn't run all the strategies, nor all the configurations for the bigger
596 platforms with 1024 nodes, since to simulations would have run for a too long
597 time.
598
599 Anyway, all these the experiments represent more than 240 hours of computing
600 time.
601
602 \subsubsection{Metrics}
603 \label{sec.metrics}
604
605 In order to evaluate and compare the different load balancing strategies we had
606 to define several metrics.  Our goal, when choosing these metrics, was to have
607 something tending to a constant value, i.e. to have a measure which is not
608 changing anymore once the convergence state is reached.  Moreover, we wanted to
609 have some normalized value, in order to be able to compare them across different
610 settings.
611
612 With these constraints in mind, we defined the following metrics:
613 %
614 \begin{description}
615 \item[\textbf{average idle time:}] that's the total time spent, when the nodes
616   don't hold any share of load, and thus have nothing to compute.  This total
617   time is divided by the number of participating nodes, such as to have a number
618   that can be compared between simulations of different sizes.
619
620   This metric is expected to give an idea of the ability of the strategy to
621   diffuse the load quickly.  A smaller value is better.
622
623 \item[\textbf{average convergence date:}] that's the average of the dates when
624   all nodes reached the convergence state.  The dates are measured as a number
625   of (simulated) seconds since the beginning of the simulation.
626
627 \item[\textbf{maximum convergence date:}] that's the date when the last node
628   reached the convergence state.
629
630   These two dates give an idea of the time needed by the strategy to reach the
631   equilibrium state.  A smaller value is better.
632
633 \item[\textbf{data transfer amount:}] that's the sum of the amount of all data
634   transfers during the simulation.  This sum is then normalized by dividing it
635   by the total amount of data present in the system.
636
637   This metric is expected to give an idea of the efficiency of the strategy in
638   terms of data movements, i.e. its ability to reach the equilibrium with fewer
639   transfers.  Again, a smaller value is better.
640
641 \end{description}
642
643
644 \subsection{Experimental results}
645 \label{sec.results}
646
647 In this section, the results for the different simulations will be presented,
648 and we'll try to explain our observations.
649
650 \subsubsection{Cluster vs grid platforms}
651
652 As mentioned earlier, we simulated the different algorithms on two kinds of
653 physical platforms: clusters and grids.  A first observation that we can make,
654 is that the graphs we draw from the data have a similar aspect for the two kinds
655 of platforms.  The only noticeable difference is that the algorithms need a bit
656 more time to achieve the convergence on the grid platforms, than on clusters.
657 Nevertheless their relative performances remain generally identical.
658
659 This suggests that the relative performances of the different strategies are not
660 influenced by the characteristics of the physical platform.  The differences in
661 the convergence times can be explained by the fact that on the grid platforms,
662 distant sites are interconnected by links of smaller bandwidth.
663
664 Therefore, in the following, we'll only discuss the results for the grid
665 platforms.
666
667 \subsubsection{Main results}
668
669 \begin{figure*}[p]
670   \centering
671   \includegraphics[width=.5\linewidth]{data/graphs/R1-10:1-grid-line}%
672   \includegraphics[width=.5\linewidth]{data/graphs/R1-1:10-grid-line}
673   \includegraphics[width=.5\linewidth]{data/graphs/R1-10:1-grid-torus}%
674   \includegraphics[width=.5\linewidth]{data/graphs/R1-1:10-grid-torus}
675   \includegraphics[width=.5\linewidth]{data/graphs/R1-10:1-grid-hcube}%
676   \includegraphics[width=.5\linewidth]{data/graphs/R1-1:10-grid-hcube}
677   \caption{Real mode, initially on an only mode, comp/comm cost ratio = $10/1$ (left), or $1/10$ (right).}
678   \label{fig.results1}
679 \end{figure*}
680
681 \begin{figure*}[p]
682   \centering
683   \includegraphics[width=.5\linewidth]{data/graphs/RN-10:1-grid-line}%
684   \includegraphics[width=.5\linewidth]{data/graphs/RN-1:10-grid-line}
685   \includegraphics[width=.5\linewidth]{data/graphs/RN-10:1-grid-torus}%
686   \includegraphics[width=.5\linewidth]{data/graphs/RN-1:10-grid-torus}
687   \includegraphics[width=.5\linewidth]{data/graphs/RN-10:1-grid-hcube}%
688   \includegraphics[width=.5\linewidth]{data/graphs/RN-1:10-grid-hcube}
689   \caption{Real mode, random initial distribution, comp/comm cost ratio = $10/1$ (left), or $1/10$ (right).}
690   \label{fig.resultsN}
691 \end{figure*}
692
693 The main results for our simulations on grid platforms are presented on the
694 figures~\ref{fig.results1} and~\ref{fig.resultsN}.
695 %
696 The results on figure~\ref{fig.results1} are when the load to balance is
697 initially on an only node, while the results on figure~\ref{fig.resultsN} are
698 when the load to balance is initially randomly distributed over all nodes.
699
700 On both figures, the computation/communication cost ratio is $10/1$ on the left
701 column, and $1/10$ on the right column.  With a computation/communication cost
702 ratio of $1/1$ the results are just between these two extrema, and definitely
703 don't give additional information, so we chose not to show them here.
704
705 On each of the figures~\ref{fig.results1} and~\ref{fig.resultsN}, the results
706 are given for the process topology being, from top to bottom, a line, a torus or
707 an hypercube.
708
709 Finally, on the graphs, the vertical bars show the measured times for each of
710 the algorithms.  These measured times are, from bottom to top, the average idle
711 time, the average convergence date, and the maximum convergence date (see
712 Section~\ref{sec.metrics}).  The measurements are repeated for the different
713 platform sizes.  Some bars are missing, specially for large platforms.  This is
714 either because the algorithm did not reach the convergence state in the
715 allocated time, or because we simply decided not to run it.
716
717 \FIXME{donner les premières conclusions, annoncer le plan de la suite}
718 \FIXME{comparer be/makhoul -> be tient la route (parler du cas réel uniquement)}
719
720 \subsubsection{With the virtual load extension}
721
722 \FIXME{valider l'extension virtual load -> c'est 'achement bien}
723
724 \subsubsection{The $k$ parameter}
725
726 \FIXME{proposer le -k -> ça peut aider dans certains cas}
727
728 \subsubsection{With an initial random distribution, and larger platforms}
729
730 \FIXME{dire quoi ici ?}
731
732 \subsubsection{With integer load}
733
734 \FIXME{conclure avec la version entière -> on n'a pas l'effet d'escalier !}
735
736 \FIXME{what about the amount of data?}
737
738 \FIXME{On constate quoi (vérifier avec les chiffres)?
739 \begin{itemize}
740 \item cluster ou grid, entier ou réel, ne font pas de grosses différences
741 \item bookkeeping? améliore souvent les choses, parfois au prix d'un retard au démarrage
742 \item makhoul? se fait battre sur les grosses plateformes
743 \item taille de plateforme?
744 \item ratio comp/comm?
745 \item option $k$? peut-être intéressant sur des plateformes fortement interconnectées (hypercube)
746 \item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
747 \item répartition initiale de la charge ?
748 \item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
749   pas à cause de l'effet d'escalier que bk est capable de gommer.
750 \end{itemize}}
751
752 % On veut montrer quoi ? :
753
754 % 1) best plus rapide que les autres (simple, makhoul)
755 % 2) avantage virtual load
756
757 % Est ce qu'on peut trouver des contre exemple?
758 % Topologies variées
759
760
761 % Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées
762 % Mais aussi simulation avec temps court qui montre que seul best converge
763
764 % Expés avec ratio calcul/comm rapide et lent
765
766 % Quelques expés avec charge initiale aléatoire plutot que sur le premier proc
767
768 % Cadre processeurs homogènes
769
770 % Topologies statiques
771
772 % On ne tient pas compte de la vitesse des liens donc on la considère homogène
773
774 % Prendre un réseau hétérogène et rendre processeur homogène
775
776 % Taille : 10 100 très gros
777
778 \section{Conclusion and perspectives}
779
780 \FIXME{conclude!}
781
782 \section*{Acknowledgments}
783
784 Computations have been performed on the supercomputer facilities of the
785 Mésocentre de calcul de Franche-Comté.
786
787 \bibliographystyle{elsarticle-num}
788 \bibliography{biblio}
789 \FIXME{find and add more references}
790
791 \end{document}
792
793 %%% Local Variables:
794 %%% mode: latex
795 %%% TeX-master: t
796 %%% fill-column: 80
797 %%% ispell-local-dictionary: "american"
798 %%% End:
799
800 % LocalWords:  Raphaël Couturier Arnaud Giersch Franche ij Bertsekas Tsitsiklis
801 % LocalWords:  SimGrid DASUD Comté asynchronism ji ik isend irecv Cortés et al
802 % LocalWords:  chan ctrl fifo Makhoul GFlop xml pre FEMTO Makhoul's fca bdee
803 % LocalWords:  cdde Contassot Vivier underlaid du de Maréchal Juin cedex calcul
804 % LocalWords:  biblio