]> AND Private Git Repository - loba-papers.git/blobdiff - supercomp11/supercomp11.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/loba-papers
[loba-papers.git] / supercomp11 / supercomp11.tex
index 2fc63f7a339043ca3f21e0f8baef4d49c089ff10..3c07eff0918ec15561b874c64c2800fccd86c57c 100644 (file)
@@ -1,5 +1,8 @@
-
 \documentclass[smallextended]{svjour3}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{mathptmx}
+\usepackage{courier}
 \usepackage{graphicx}
 
 \begin{document}
@@ -28,7 +31,8 @@
 \begin{abstract}
 
 Most of the  time, asynchronous load balancing algorithms  have extensively been
-studied in a theoretical point  of view. The Bertsekas and Tsitsiklis' algorithm
+studied in a theoretical point  of view. The Bertsekas and Tsitsiklis'
+algorithm~\cite[section~7.4]{bertsekas+tsitsiklis.1997.parallel}
 is certainly  the most well known  algorithm for which the  convergence proof is
 given. From a  practical point of view, when  a node wants to balance  a part of
 its  load to some  of its  neighbors, the  strategy is  not described.   In this
@@ -40,7 +44,7 @@ balancing  algorithm is  implemented most  of the  time can  dissociate messages
 concerning load transfers and message  concerning load information.  In order to
 increase  the  converge of  a  load balancing  algorithm,  we  propose a  simple
 heuristic called \texttt{virtual load} which allows a node that receives an load
-information message  to integrate the  load that it  will receive latter  in its
+information message  to integrate the  load that it  will receive later  in its
 load (virtually) and consequently sends a (real) part of its load to some of its
 neighbors.  In order to  validate our  approaches, we  have defined  a simulator
 based on SimGrid which allowed us to conduct many experiments.
@@ -65,8 +69,9 @@ algorithm which is definitively a reference  for many works. In their work, they
 proved that under classical  hypotheses of asynchronous iterative algorithms and
 a  special  constraint   avoiding  \texttt{ping-pong}  effect,  an  asynchronous
 iterative algorithm  converge to  the uniform load  distribution. This  work has
-been extended by many authors. For example, DASUD proposes a version working with
-integer load. {\bf Rajouter des choses ici}.
+been extended by many authors. For example,
+DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous} propose a version working
+with integer load. {\bf Rajouter des choses ici}.
 
 Although  the Bertsekas  and Tsitsiklis'  algorithm describes  the  condition to
 ensure the convergence,  there is no indication or  strategy to really implement
@@ -138,5 +143,16 @@ Comment on the problem in the convergence condition.
 \section{Conclusion and perspectives}
 
 
+\bibliographystyle{spmpsci}
+\bibliography{biblio}
 
 \end{document}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% ispell-local-dictionary: "american"
+%%% End:
+
+% LocalWords:  Raphaël Couturier Arnaud Giersch Abderrahmane Sider
+% LocalWords:  Bertsekas Tsitsiklis SimGrid DASUD