DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
version working with integer load. This work was later generalized by
the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
-\FIXME{Rajouter des choses ici.}
+\FIXME{Rajouter des choses ici. Lesquelles ?}
Although the Bertsekas and Tsitsiklis' algorithm describes the condition to
ensure the convergence, there is no indication or strategy to really implement
$x_3^2(t)$. So we consider that the \emph{ping-pong} condition is probably to
strong. Currently, we did not try to make another convergence proof without this
condition or with a weaker condition.
-%
-\FIXME{Develop: We have the feeling that such a weaker condition
- exists, because (it's not a proof, but) we have never seen any
- scenario that is not leading to convergence, even with LB-strategies
- that are not fulfilling these two conditions.}
+
+Nevertheless, we conjecture that such a weaker condition exists. In fact, we
+have never seen any scenario that is not leading to convergence, even with
+load-balancing strategies that are not exactly fulfilling these two conditions.
+
+It may be the subject of future work to express weaker conditions, and to prove
+that they are sufficient to ensure the convergence of the load-balancing
+algorithm.
\section{Best effort strategy}
\label{Best-effort}
available at
\url{http://info.iut-bm.univ-fcomte.fr/staff/giersch/software/loba.tar.gz}.
-\FIXME{ajouter des détails sur la gestion de la charge virtuelle ?}
+\FIXME{ajouter des détails sur la gestion de la charge virtuelle ?
+par ex, donner l'idée générale de l'implémentation. l'idée générale est déja décrite en section~\ref{Virtual load}}
\subsection{Experimental contexts}
\label{Contexts}
\subsection{Validation of our approaches}
\label{Results}
+Dans cet ordre:
+...
+- comparer be/makhoul -> be tient la route
+ -> en réel uniquement
+- valider l'extension virtual load -> c'est 'achement bien
+- proposer le -k -> ça peut aider dans certains cas
+- conclure avec la version entière -> on n'a pas l'effet d'escalier !
+Q: comment inclure les types/tailles de platesformes ?
+Q: comment faire des moyennes ?
+Q: comment introduire les distrib 1/N ?
+...
+
+On constate quoi (vérifier avec les chiffres)?
+\begin{itemize}
+\item cluster ou grid, entier ou réel, ne font pas de grosses différences
+
+\item bookkeeping? améliore souvent les choses, parfois au prix d'un retard au démarrage
+
+\item makhoul? se fait battre sur les grosses plateformes
+
+\item taille de plateforme?
+
+\item ratio comp/comm?
+\item option $k$? peut-être intéressant sur des plateformes fortement interconnectées (hypercube)
+
+\item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
+
+\item répartition initiale de la charge ?
+
+\item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
+ pas à cause de l'effet d'escalier que bk est capable de gommer.
+
+\end{itemize}
+
+\begin{itshape}
On veut montrer quoi ? :
+\FIXME{remove that part}
1) best plus rapide que les autres (simple, makhoul)
2) avantage virtual load
Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées
Mais aussi simulation avec temps court qui montre que seul best converge
-
Expés avec ratio calcul/comm rapide et lent
Quelques expés avec charge initiale aléatoire plutot que sur le premier proc
Prendre un réseau hétérogène et rendre processeur homogène
Taille : 10 100 très gros
+\end{itshape}
\section{Conclusion and perspectives}
+\FIXME{conclude!}
+
\begin{acknowledgements}
Computations have been performed on the supercomputer facilities of
the Mésocentre de calcul de Franche-Comté.
\end{acknowledgements}
+\FIXME{find and add more references}
\bibliographystyle{spmpsci}
\bibliography{biblio}