+## extract data for plain algorithms, in real mode
+#ds.base <- subset(ds, Mode == "R" & grepl("[lt]_plain", Algo))
+
+## extract data for one experiment
+#xx <- subset(ds,
+# Mode == "R" & Distrib == 1 & Ratio == "1:1" &
+# Platform == "cluster" & Size == 16 & Topo == "line")
+
+
+
+draw <- function(dset = ds,
+ draw_mode = "R",
+ draw_distrib = 1,
+ draw_ratio = "1:1",
+ draw_platform = "cluster",
+ draw_topo = "hcube") {
+
+ ## extract desired data
+ dset <- subset(dset,
+ Mode == draw_mode & Distrib == draw_distrib &
+ Ratio == draw_ratio &
+ Platform == draw_platform & Topo == draw_topo)
+
+ ## reorder lines (first "plain", then "bookkeeping")
+ dset <- rbind(subset(dset, grepl("plain", Algo)),
+ subset(dset, grepl("bookkeeping", Algo)))
+ dset <- dset[order(dset$Size), ]
+
+ ## finally, add an "Index" attribute(, for further processing
+ dset <- cbind(dset, Index=seq(1, length(dset$Size))) # FIXME
+
+ #print(dset)
+
+ ## save the graphical parameters
+ p <- par(no.readonly=TRUE)
+
+ par(mar=c(13, 4, 4, 4) + 0.1, # change margins
+ mgp=c(11, 1, 0))
+
+ par(las=3) # always draw labels vertically
+
+ ## compute the time range: 0..max+20%
+ time_range <- c(0, range(dset$Conv_max)[2] * 1.2)
+
+ ## first draw the bars
+ barplot(dset$Conv_max, axes=FALSE, col="red",
+ names=dset$Algo,
+ ylim=time_range)
+ barplot(dset$Conv_avg, axes=FALSE, col="green",
+ add=TRUE)
+ barplot(dset$Idle_avg, axes=FALSE, col="blue",
+ add=TRUE)
+
+ ## draw the time axis on the left
+ axis(2, labels=TRUE)
+ mtext("Simulated time (s)", side=2, line=2.5)
+
+ title(xlab="Algorithms")
+
+ ## compute the data range
+ x_data_range <- c(0.6, length(dset$Algo) + 0.4)
+ data_range <- c(0, range(dset$Data_amnt)[2] * 1.04)
+
+ ## draw the data amnt line graphs
+ for (alg in unique(dset$Algo)) {
+ print(alg);
+ dset.da <- subset(dset, Algo == alg)
+ ## start a new graph, but drawn on the same device
+ par(new=TRUE)
+ plot(dset.da$Index, dset.da$Data_amnt, axes=FALSE, xlab="", type="b",
+ xlim=x_data_range,
+ yaxs="i", ylim=data_range)
+ }
+
+ ## draw the data amnt axis on the right
+ axis(4, labels=TRUE)
+ mtext("Data amount (relative)", side=4, line=2.5)
+
+ ## finally, set title
+ t <- paste0(dset$Mode[1], dset$Distrib[1], " / ",
+ dset$Ratio[1], " / ",
+ dset$Platform[1], " / ", dset$Topo[1])
+ title(main=t)
+
+ ## restore the graphical parameters
+ par(p)
+
+ return(dset)
+}
+
+draw2 <- function(dset = ds,
+ draw_mode = "R",
+ draw_distrib = 1,
+ draw_ratio = "1:1",
+ draw_platform = "cluster",
+ draw_topo = "hcube") {
+
+ ## extract desired data
+ dset <- subset(dset,
+ Mode == draw_mode & Distrib == draw_distrib &
+ Ratio == draw_ratio &
+ Platform == draw_platform & Topo == draw_topo)
+
+ ## reorder lines (first "plain", then "bookkeeping")
+ dset <- rbind(subset(dset, grepl("plain", Algo)),
+ subset(dset, grepl("bookkeeping", Algo)))
+ dset <- dset[order(dset$Size), ]
+
+ ## keep only useful data
+ dset.long <- data.frame(Algo=dset$Algo, Size=dset$Size,
+ Idle_avg=dset$Idle_avg,
+ Conv_avg=dset$Conv_avg,
+ Conv_max=dset$Conv_max)
+
+ ## reshape data -> wide
+ dset.wide <- reshape(dset.long, direction="wide",
+ idvar="Algo", timevar="Size")