\newcommand{\VAR}[1]{\textit{#1}}
+\newcommand{\besteffort}{\emph{best effort}}
+\newcommand{\makhoul}{\emph{Makhoul}}
+
\begin{document}
\begin{frontmatter}
\author{Arnaud Giersch\corref{cor}}
\ead{arnaud.giersch@femto-st.fr}
-\address{FEMTO-ST, University of Franche-Comté\\
- 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France}
+\address{%
+ Institut FEMTO-ST (UMR 6174),
+ Université de Franche-Comté (UFC),
+ Centre National de la Recherche Scientifique (CNRS),
+ École Nationale Supérieure de Mécanique et des Microtechniques (ENSMM),
+ Université de Technologie de Belfort Montbéliard (UTBM)\\
+ 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France}
\cortext[cor]{Corresponding author.}
the most well known algorithm for which the convergence proof is given. From a
practical point of view, when a node wants to balance a part of its load to
some of its neighbors, the strategy is not described. In this paper, we
- propose a strategy called \emph{best effort} which tries to balance the load
+ propose a strategy called \besteffort{} which tries to balance the load
of a node to all its less loaded neighbors while ensuring that all the nodes
concerned by the load balancing phase have the same amount of load. Moreover,
asynchronous iterative algorithms in which an asynchronous load balancing
ensure the convergence, there is no indication or strategy to really implement
the load distribution. In other word, a node can send a part of its load to one
or many of its neighbors while all the convergence conditions are
-followed. Consequently, we propose a new strategy called \emph{best effort}
+followed. Consequently, we propose a new strategy called \besteffort{}
that tries to balance the load of a node to all its less loaded neighbors while
ensuring that all the nodes concerned by the load balancing phase have the same
amount of load. Moreover, when real asynchronous applications are considered,
\label{sec.besteffort}
In this section we describe a new load-balancing strategy that we call
-\emph{best effort}. First, we explain the general idea behind this strategy,
+\besteffort{}. First, we explain the general idea behind this strategy,
and then we describe some variants of this basic strategy.
\subsection{Basic strategy}
-The general idea behind the \emph{best effort} strategy is that each processor,
+The general idea behind the \besteffort{} strategy is that each processor,
that detects it has more load than some of its neighbors, sends some load to the
most of its less loaded neighbors, doing its best to reach the equilibrium
between those neighbors and himself.
Another load balancing strategy, working under the same conditions, was
previously developed by Bahi, Giersch, and Makhoul in
\cite{bahi+giersch+makhoul.2008.scalable}. In order to assess the performances
-of the new \emph{best effort}, we naturally chose to compare it to this anterior
+of the new \besteffort{}, we naturally chose to compare it to this anterior
work. More precisely, we will use the algorithm~2 from
\cite{bahi+giersch+makhoul.2008.scalable} and, in the following, we will
reference it under the name of Makhoul's.
In order to test and validate our approaches, we wrote a simulator
using the SimGrid
-framework~\cite{casanova+legrand+quinson.2008.simgrid}. This
+framework~\cite{simgrid.web,casanova+legrand+quinson.2008.simgrid}. This
simulator, which consists of about 2,700 lines of C++, allows to run
the different load-balancing strategies under various parameters, such
as the initial distribution of load, the interconnection topology, the
\subsubsection{Load balancing strategies}
Several load balancing strategies were compared. We ran the experiments with
-the \emph{Best effort}, and with the \emph{Makhoul} strategies. \emph{Best
+the \besteffort{}, and with the \makhoul{} strategies. \emph{Best
effort} was tested with parameter $k = 1$, $k = 2$, and $k = 4$. Secondly,
each strategy was run in its two variants: with, and without the management of
\emph{virtual load}. Finally, we tested each configuration with \emph{real},
To summarize the different load balancing strategies, we have:
\begin{description}
-\item[\textbf{strategies:}] \emph{Makhoul}, or \emph{Best effort} with $k\in
+\item[\textbf{strategies:}] \makhoul{}, or \besteffort{} with $k\in
\{1,2,4\}$
\item[\textbf{variants:}] with, or without virtual load
\item[\textbf{domain:}] real load, or integer load
\label{sec.results}
In this section, the results for the different simulations will be presented,
-and we'll try to explain our observations.
+and we will try to explain our observations.
\subsubsection{Cluster vs grid platforms}
\FIXME{annoncer le plan de la suite}
-\subsubsection{The \emph{best effort} strategy}
+\subsubsection{The \besteffort{} and \makhoul{} strategies without virtual load}
-Looking at the graph on figure~\ref{fig.results1}, we can see that the
-\emph{best effort} strategy is not too bad.
+Before looking at the different variations, we will first show that the plain
+\besteffort{} strategy is valuable, and may be as good as the \makhoul{}
+strategy. On Figures~\ref{fig.results1} and~\ref{fig.resultsN},
+these strategies are respectively labeled ``b'' and ``a''.
-\FIXME{donner les premières conclusions}
-\FIXME{comparer be/makhoul -> be tient la route (parler du cas réel uniquement)}
+We can see that the relative performance of these strategies is mainly
+influenced by the application topology. It is for the line topology that the
+difference is the more important. In this case, the \besteffort{} strategy is
+nearly faster than the \makhoul{} strategy. This can be explained by the
+fact that the \besteffort{} strategy tries to distribute the load fairly between
+all the nodes and with the line topology, it is easy to load balance the load
+fairly.
-\subsubsection{With the virtual load extension}
+On the contrary, for the hypercube topology, the \besteffort{} strategy performs
+worse than the \makhoul{} strategy. In this case, the \makhoul{} strategy which
+tries to give more load to few neighbors reaches the equilibrium faster.
-\FIXME{valider l'extension virtual load -> c'est 'achement bien}
+For the torus topology, for which the number of links is between the line and
+the hypercube, the \makhoul{} strategy is slightly better but the difference is
+more nuanced when the initial load is only on one node. The only case where the
+\makhoul{} strategy is really faster than the \besteffort{} strategy is with the
+random initial distribution when the communication are slow.
-\subsubsection{The $k$ parameter}
+Globally the number of interconnection is very important. The more
+the interconnection links are, the faster the \makhoul{} strategy is because
+it distributes quickly significant amount of load, even if this is unfair, between
+all the neighbors. In opposition, the \besteffort{} strategy distributes the
+load fairly so this strategy is better for low connected strategy.
-\FIXME{proposer le -k -> ça peut aider dans certains cas}
-\subsubsection{With an initial random distribution, and larger platforms}
+\subsubsection{Virtual load}
-\FIXME{dire quoi ici ?}
+The influence of virtual load is most of the time really significant compared to
+the same configuration without it. Sometimes it has no effect but {\bf A
+ VERIFIER} it has never a negative effect on the load balancing we tested.
-\subsubsection{With integer load}
+On Figure~\ref{fig.results1}, when the load is initially on one node, it can be
+noticed that the average idle times are generally longer with the virtual load
+than without it. This can be explained by the fact that, with virtual load,
+processors will exchange all the load they need to exchange as soon as the
+virtual load has been balanced between all the processors. So consequently they
+cannot compute at the beginning. This is especially noticeable when the
+communication are slow (on the left part of Figure ~\ref{fig.results1}.
-\FIXME{conclure avec la version entière -> on n'a pas l'effet d'escalier !}
+%Dans ce cas légère amélioration de la cvg. max. Temps moyen de cvg. amélioré,
+%mais plus de temps passé en idle, surtout quand les comms coutent cher.
-\FIXME{what about the amount of data?}
+%\subsubsection{The \besteffort{} strategy with an initial random load
+% distribution, and larger platforms}
-\FIXME{On constate quoi (vérifier avec les chiffres)?
-\begin{itemize}
-\item cluster ou grid, entier ou réel, ne font pas de grosses différences
-\item bookkeeping? améliore souvent les choses, parfois au prix d'un retard au démarrage
-\item makhoul? se fait battre sur les grosses plateformes
-\item taille de plateforme?
-\item ratio comp/comm?
-\item option $k$? peut-être intéressant sur des plateformes fortement interconnectées (hypercube)
-\item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
-\item répartition initiale de la charge ?
-\item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
- pas à cause de l'effet d'escalier que bk est capable de gommer.
-\end{itemize}}
+%In
+%Mêmes conclusions pour line et hcube.
+%Sur tore, BE se fait exploser quand les comms coutent cher.
+
+%\FIXME{virer les 1024 ?}
+
+%\subsubsection{With the virtual load extension with an initial random load
+% distribution}
+
+%Soit c'est équivalent, soit on gagne -> surtout quand les comms coutent cher et
+%qu'il y a beaucoup de voisins.
+
+\subsubsection{The $k$ parameter}
+\label{results-k}
+
+As explained previously when the communication are slow the \besteffort{}
+strategy is efficient. This is due to the fact that it tries to balance the load
+fairly and consequently a significant amount of the load is transfered between
+processors. In this situation, it is possible to reduce the convergence time by
+using the leveler parameter (parameter $k$). The advantage of using this
+solution is particularly efficient when the initial load is randomly distributed
+on the nodes with torus and hypercube topology and slow communication. When
+virtual load mechanism is used, the effect of this parameter is also visible
+with the same condition.
+
+
+
+\subsubsection{With integer load}
+
+We also performed some experiments with integer load instead of load with real
+value. In this case, the results have globally the same behavior. The most
+intereting result, from our point of view, is that the virtual mode allows
+processors in a line topology to converge to the uniform load balancing. Without
+the virtual load, most of the time, processors converge to what we call the
+``stairway effect'', that is to say that there is only a difference of one in
+the load of each processor and its neighbors (for example with 10 processors, we
+obtain 10 9 8 7 6 6 7 8 9 10 instead of 8 8 8 8 8 8 8 8 8 8).
+
+%Cas normal, ligne -> converge pas (effet d'escalier).
+%Avec vload, ça converge.
+
+%Dans les autres cas, résultats similaires au cas réel: redire que vload est
+%intéressant.
+
+\FIXME{ajouter une courbe avec l'équilibrage en entier}
+
+\FIXME{virer la metrique volume de comms}
+
+\FIXME{ajouter une courbe ou on voit l'évolution de la charge en fonction du
+ temps : avec et sans vload}
+
+% \begin{itemize}
+% \item cluster ou grid, entier ou réel, ne font pas de grosses différences
+% \item bookkeeping? améliore souvent les choses, parfois au prix d'un retard au démarrage
+% \item makhoul? se fait battre sur les grosses plateformes
+% \item taille de plateforme?
+% \item ratio comp/comm?
+% \item option $k$? peut-être intéressant sur des plateformes fortement interconnectées (hypercube)
+% \item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
+% \item répartition initiale de la charge ?
+% \item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
+% pas à cause de l'effet d'escalier que bk est capable de gommer.
+% \end{itemize}}
% On veut montrer quoi ? :
% LocalWords: SimGrid DASUD Comté asynchronism ji ik isend irecv Cortés et al
% LocalWords: chan ctrl fifo Makhoul GFlop xml pre FEMTO Makhoul's fca bdee
% LocalWords: cdde Contassot Vivier underlaid du de Maréchal Juin cedex calcul
-% LocalWords: biblio
+% LocalWords: biblio Institut UMR Université UFC Centre Scientifique CNRS des
+% LocalWords: École Nationale Supérieure Mécanique Microtechniques ENSMM UTBM
+% LocalWords: Technologie Bahi