+been extended by many authors. For example,
+DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous} propose a version working
+with integer load. {\bf Rajouter des choses ici}.
+
+Although the Bertsekas and Tsitsiklis' algorithm describes the condition to
+ensure the convergence, there is no indication or strategy to really implement
+the load distribution. In other word, a node can send a part of its load to one
+or many of its neighbors while all the convergence conditions are
+followed. Consequently, we propose a new strategy called \texttt{best effort}
+that tries to balance the load of a node to all its less loaded neighbors while
+ensuring that all the nodes concerned by the load balancing phase have the same
+amount of load. Moreover, when real asynchronous applications are considered,
+using asynchronous load balancing algorithms can reduce the execution
+times. Most of the times, it is simpler to distinguish load information messages
+from data migration messages. Formers ones allows a node to inform its
+neighbors of its current load. These messages are very small, they can be sent
+quite often. For example, if an computing iteration takes a significant times
+(ranging from seconds to minutes), it is possible to send a new load information
+message at each neighbor at each iteration. Latter messages contains data that
+migrates from one node to another one. Depending on the application, it may have
+sense or not that nodes try to balance a part of their load at each computing
+iteration. But the time to transfer a load message from a node to another one is
+often much nore longer that to time to transfer a load information message. So,
+when a node receives the information that later it will receive a data message,
+it can take this information into account and it can consider that its new load
+is larger. Consequently, it can send a part of it real load to some of its
+neighbors if required. We call this trick the \texttt{virtual load} mecanism.
+
+
+
+So, in this work, we propose a new strategy for improving the distribution of
+the load and a simple but efficient trick that also improves the load
+balacing. Moreover, we have conducted many simulations with simgrid in order to
+validate our improvements are really efficient. Our simulations consider that in
+order to send a message, a latency delays the sending and according to the
+network performance and the message size, the time of the reception of the
+message also varies.
+
+In the following of this paper, Section~\ref{BT algo} describes the Bertsekas
+and Tsitsiklis' asynchronous load balancing algorithm. Moreover, we present a
+possible problem in the convergence conditions. Section~\ref{Best-effort}
+presents the best effort strategy which provides an efficient way to reduce the
+execution times. In Section~\ref{Virtual load}, the virtual load mecanism is
+proposed. Simulations allowed to show that both our approaches are valid using a
+quite realistic model detailed in Section~\ref{Simulations}. Finally we give a
+conclusion and some perspectives to this work.
+
+
+
+
+\section{Bertsekas and Tsitsiklis' asynchronous load balancing algorithm}
+\label{BT algo}
+
+In order prove the convergence of asynchronous iterative load balancing
+Bertesekas and Tsitsiklis proposed a model
+in~\cite{bertsekas+tsitsiklis.1997.parallel}. Here we recall some notations.
+Consider that $N={1,...,n}$ processors are connected through a network.
+Communication links are represented by a connected undirected graph $G=(N,V)$
+where $V$ is the set of links connecting differents processors. In this work, we
+consider that processors are homogeneous for sake of simplicity. It is quite
+easy to tackle the heterogeneous case~\cite{ElsMonPre02}. Load of processor $i$
+at time $t$ is represented by $x_i(t)\geq 0$. Let $V(i)$ be the set of
+neighbors of processor $i$. Each processor $i$ has an estimate of the load of
+each of its neighbors $j \in V(i)$ represented by $x_j^i(t)$. According to
+asynchronism and communication delays, this estimate may be outdated. We also
+consider that the load is described by a continuous variable.
+
+When a processor send a part of its load to one or some of its neighbors, the
+transfer takes time to be completed. Let $s_{ij}(t)$ be the amount of load that
+processor $i$ has transfered to processor $j$ at time $t$ and let $r_{ij}(t)$ be the
+amount of load received by processor $j$ from processor $i$ at time $t$. Then
+the amount of load of processor $i$ at time $t+1$ is given by:
+\begin{equation}
+x_i(t+1)=x_i(t)-\sum_{j\in V(i)} s_{ij}(t) + \sum_{j\in V(i)} r_{ji}(t)
+\end{equation}
+
+
+\section{Best effort strategy}
+\label{Best-effort}
+
+
+
+\section{Virtual load}
+\label{Virtual load}
+
+\section{Simulations}
+\label{Simulations}
+
+\subsection{Simulation model}