+
+In order to show the behaviour of the different strategies in different
+settings, we simulated the executions on two sorts of platforms. These two
+sorts of platforms differ by their underlaid network topology. On the one hand,
+we have homogeneous platforms, modeled as a cluster. On the other hand, we have
+heterogeneous platforms, modeled as the interconnection of a number of clusters.
+The heterogeneous platform descriptions were created by taking a subset of the
+Grid'5000 infrastructure\footnote{Grid'5000 is a French large scale experimental
+ Grid (see \url{https://www.grid5000.fr/}).}, as described in the platform file
+\texttt{g5k.xml} distributed with SimGrid. Note that the heterogeneity of the
+platform only comes from the network topology. The processor speeds, and
+network bandwidths were normalized since our algorithms currently are not aware
+of such heterogeneity. We arbitrarily chose to fix the processor speed to
+1~GFlop/s, and the network bandwidth to 125~MB/s, with a latency of 50~$\mu$s,
+except for the links between geographically distant sites, where the network
+bandwidth was fixed to 2.25~GB/s, with a latency of 500~$\mu$s.
+
+Then we derived each sort of platform with four different number of computing
+nodes: 16, 64, 256, and 1024 nodes.
+
+The distributed processes of the application were then logically organized along
+three possible topologies: a line, a torus or an hypercube. We ran tests where
+the total load was initially on an only node (at one end for the line topology),
+and other tests where the load was initially randomly distributed accross all
+the participating nodes.
+
+For each of the preceding configuration, we finally had to cohose the
+computation and communication costs of a load unit. We chose them, such as to
+have three different computation over communication cost ratios, and hence model
+three different kinds of applications:
+\begin{itemize}
+\item mainly communicating, with a computation/communication cost ratio of $1/10$;
+\item mainly computing, with a computation/communication cost ratio of $10/1$ ;
+\item balanced, with a computation/communication cost ratio of $1/1$.
+\end{itemize}
+
+To summarize the various configurations, we have: