proved that under classical hypotheses of asynchronous iterative algorithms and
a special constraint avoiding \emph{ping-pong} effect, an asynchronous
iterative algorithm converge to the uniform load distribution. This work has
-been extended by many authors. For example,
-DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous} propose a version working
-with integer load. {\bf Rajouter des choses ici}.
+been extended by many authors. For example, Cortés et al., with
+DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
+version working with integer load. This work was later generalized by
+the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
+{\bf Rajouter des choses ici}.
Although the Bertsekas and Tsitsiklis' algorithm describes the condition to
ensure the convergence, there is no indication or strategy to really implement