+\FIXME{annoncer le plan de la suite}
+
+\subsubsection{The \besteffort{} and \makhoul{} strategies without virtual load}
+
+Before looking at the different variations, we will first show that the plain
+\besteffort{} strategy is valuable, and may be as good as the \makhoul{}
+strategy. On Figures~\ref{fig.results1} and~\ref{fig.resultsN},
+these strategies are respectively labeled ``b'' and ``a''.
+
+We can see that the relative performance of these strategies is mainly
+influenced by the application topology. It is for the line topology that the
+difference is the more important. In this case, the \besteffort{} strategy is
+nearly faster than the \makhoul{} strategy. This can be explained by the
+fact that the \besteffort{} strategy tries to distribute the load fairly between
+all the nodes and with the line topology, it is easy to load balance the load
+fairly.
+
+On the contrary, for the hypercube topology, the \besteffort{} strategy performs
+worse than the \makhoul{} strategy. In this case, the \makhoul{} strategy which
+tries to give more load to few neighbors reaches the equilibrium faster.
+
+For the torus topology, for which the number of links is between the line and
+the hypercube, the \makhoul{} strategy is slightly better but the difference is
+more nuanced when the initial load is only on one node. The only case where the
+\makhoul{} strategy is really faster than the \besteffort{} strategy is with the
+random initial distribution when the communication are slow.
+
+Globally the number of interconnection is very important. The more
+the interconnection links are, the faster the \makhoul{} strategy is because
+it distributes quickly significant amount of load, even if this is unfair, between
+all the neighbors. In opposition, the \besteffort{} strategy distributes the
+load fairly so this strategy is better for low connected strategy.
+
+
+\subsubsection{Virtual load}