]> AND Private Git Repository - loba-papers.git/blobdiff - supercomp11/supercomp11.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Add the possibility to give a filtering RE on command line.
[loba-papers.git] / supercomp11 / supercomp11.tex
index db3e809cbe07a1b5c33c692f719ba867f1dd5f09..b32146822cb5608d73e5ccb853e13af167297665 100644 (file)
   \begin{tabular}[t]{@{}l@{:~}l@{}}}{%
   \end{tabular}}
 
   \begin{tabular}[t]{@{}l@{:~}l@{}}}{%
   \end{tabular}}
 
-\newcommand{\FIXME}[1]{%
-  \textbf{$\triangleright$\marginpar{\textbf{[FIXME]}}~#1}}
+\newcommand{\FIXMEmargin}[1]{%
+  \marginpar{\textbf{[FIXME]} {\footnotesize #1}}}
+\newcommand{\FIXME}[2][]{%
+  \ifx #2\relax\relax \FIXMEmargin{#1}%
+  \else \textbf{$\triangleright$\FIXMEmargin{#1}~#2}\fi}
 
 \newcommand{\VAR}[1]{\textit{#1}}
 
 
 \newcommand{\VAR}[1]{\textit{#1}}
 
@@ -85,7 +88,7 @@ been extended by many authors. For example, Cortés et al., with
 DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
 version working with integer load.  This work was later generalized by
 the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
 DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous}, propose a
 version working with integer load.  This work was later generalized by
 the same authors in \cite{cedo+cortes+ripoll+al.2007.convergence}.
-\FIXME{Rajouter des choses ici.}
+\FIXME{Rajouter des choses ici.  Lesquelles ?}
 
 Although  the Bertsekas  and Tsitsiklis'  algorithm describes  the  condition to
 ensure the convergence,  there is no indication or  strategy to really implement
 
 Although  the Bertsekas  and Tsitsiklis'  algorithm describes  the  condition to
 ensure the convergence,  there is no indication or  strategy to really implement
@@ -186,20 +189,28 @@ $3$.   If  it  sends  load  to  processor $1$  it  will  not  satisfy  condition
 $x_3^2(t)$.  So we consider that the \emph{ping-pong} condition is probably to
 strong. Currently, we did not try to make another convergence proof without this
 condition or with a weaker condition.
 $x_3^2(t)$.  So we consider that the \emph{ping-pong} condition is probably to
 strong. Currently, we did not try to make another convergence proof without this
 condition or with a weaker condition.
-%
-\FIXME{Develop: We have the feeling that such a weaker condition
-  exists, because (it's not a proof, but) we have never seen any
-  scenario that is not leading to convergence, even with LB-strategies
-  that are not fulfilling these two conditions.}
+
+Nevertheless, we conjecture that such a weaker condition exists.  In fact, we
+have never seen any scenario that is not leading to convergence, even with
+load-balancing strategies that are not exactly fulfilling these two conditions.
+
+It may be the subject of future work to express weaker conditions, and to prove
+that they are sufficient to ensure the convergence of the load-balancing
+algorithm.
 
 \section{Best effort strategy}
 \label{Best-effort}
 
 
 \section{Best effort strategy}
 \label{Best-effort}
 
-In this section we  describe  a new load-balancing strategy that we call
-\emph{best effort}.  The general idea behind this strategy is that each
-processor, that detects it has more load than some of its neighbors, 
-sends some load to the most of its less loaded neighbors, doing its
-best to reach the equilibrium between those neighbors and himself.
+In this section we describe a new load-balancing strategy that we call
+\emph{best effort}.  First, we explain the general idea behind this strategy,
+and then we describe some variants of this basic strategy.
+
+\subsection{Basic strategy}
+
+The general idea behind the \emph{best effort} strategy is that each processor,
+that detects it has more load than some of its neighbors, sends some load to the
+most of its less loaded neighbors, doing its best to reach the equilibrium
+between those neighbors and himself.
 
 More precisely, when a processor $i$ is in its load-balancing phase,
 he proceeds as following.
 
 More precisely, when a processor $i$ is in its load-balancing phase,
 he proceeds as following.
@@ -246,38 +257,44 @@ he proceeds as following.
   \end{equation*}
 \end{enumerate}
 
   \end{equation*}
 \end{enumerate}
 
-\FIXME{describe parameter $k$}
-
-\section{Other strategies}
-\label{Other}
+\subsection{Leveling the amount to send}
 
 
-\FIXME{Réécrire en anglais.}
+With the aforementioned basic strategy, each node does its best to reach the
+equilibrium with its neighbors.  Since each node may be taking the same kind of
+decision at the same moment, there is the risk that a node receives load from
+several of its neighbors, and then is temporary going off the equilibrium state.
+This is particularly true with strongly connected applications.
 
 
-% \FIXME{faut-il décrire les stratégies makhoul et simple ?}
+In order to reduce this effect, we add the ability to level the amount to send.
+The idea, here, is to make smaller steps toward the equilibrium, such that a
+potentially wrong decision has a lower impact.
 
 
-% \paragraph{simple} Tentative de respecter simplement les conditions de Bertsekas.
-% Parmi les voisins moins chargés que soi, on sélectionne :
-% \begin{itemize}
-% \item un des moins chargés (vmin) ;
-% \item un des plus chargés (vmax),
-% \end{itemize}
-% puis on équilibre avec vmin en s'assurant que notre charge reste
-% toujours supérieure à celle de vmin et à celle de vmax.
+Concretely, once $s_{ij}$ has been evaluated as before, it is simply divided by
+some configurable factor.  That's what we named the ``parameter $k$'' in
+Section~\ref{Results}.  The amount of data to send is then $s_{ij}(t) = (\bar{x}
+- x^i_j(t))/k$.
+\FIXME[check that it's still named $k$ in Sec.~\ref{Results}]{}
 
 
-% On envoie donc (avec "self" pour soi-même) :
-% \[
-%     \min\left(\frac{load(self) - load(vmin)}{2}, load(self) - load(vmax)\right)
-% \]
+\section{Other strategies}
+\label{Other}
 
 
-\paragraph{makhoul} Ordonne les voisins du moins chargé au plus chargé
-puis calcule les différences de charge entre soi-même et chacun des
-voisins.
+Another load balancing strategy, working under the same conditions, was
+previously developed by Bahi, Giersch, and Makhoul in
+\cite{bahi+giersch+makhoul.2008.scalable}.  In order to assess the performances
+of the new \emph{best effort}, we naturally chose to compare it to this anterior
+work.  More precisely, we will use the algorithm~2 from
+\cite{bahi+giersch+makhoul.2008.scalable} and, in the following, we will
+reference it under the name of Makhoul's.
 
 
-Ensuite, pour chaque voisin, dans l'ordre, et tant qu'on reste plus
-chargé que le voisin en question, on lui envoie 1/(N+1) de la
-différence calculée au départ, avec N le nombre de voisins.
+Here is an outline of the Makhoul's algorithm.  When a given node needs to take
+a load balancing decision, it starts by sorting its neighbors by increasing
+order of their load.  Then, it computes the difference between its own load, and
+the load of each of its neighbors.  Finally, taking the neighbors following the
+order defined before, the amount of load to send $s_{ij}$ is computed as
+$1/(N+1)$ of the load difference, with $N$ being the number of neighbors.  This
+process continues as long as the node is more loaded than the considered
+neighbor.
 
 
-C'est l'algorithme~2 dans~\cite{bahi+giersch+makhoul.2008.scalable}.
 
 \section{Virtual load}
 \label{Virtual load}
 
 \section{Virtual load}
 \label{Virtual load}
@@ -461,7 +478,8 @@ actual source code that was used for the experiments%
 available at
 \url{http://info.iut-bm.univ-fcomte.fr/staff/giersch/software/loba.tar.gz}.
 
 available at
 \url{http://info.iut-bm.univ-fcomte.fr/staff/giersch/software/loba.tar.gz}.
 
-\FIXME{ajouter des détails sur la gestion de la charge virtuelle ?}
+\FIXME{ajouter des détails sur la gestion de la charge virtuelle ?
+par ex, donner l'idée générale de l'implémentation.  l'idée générale est déja décrite en section~\ref{Virtual load}}
 
 \subsection{Experimental contexts}
 \label{Contexts}
 
 \subsection{Experimental contexts}
 \label{Contexts}
@@ -499,7 +517,8 @@ number of computing iterations (2000 in our case).
 Note that this convergence detection was implemented in a centralized manner.
 This is easy to do within the simulator, but it's obviously not realistic.  In a
 real application we would have chosen a decentralized convergence detection
 Note that this convergence detection was implemented in a centralized manner.
 This is easy to do within the simulator, but it's obviously not realistic.  In a
 real application we would have chosen a decentralized convergence detection
-algorithm, like the one described in \cite{10.1109/TPDS.2005.2}.
+algorithm, like the one described by Bahi, Contassot-Vivier, Couturier, and
+Vernier in \cite{10.1109/TPDS.2005.2}.
 
 \paragraph{Platforms}
 
 
 \paragraph{Platforms}
 
@@ -615,7 +634,32 @@ With these constraints in mind, we defined the following metrics:
 \label{Results}
 
 
 \label{Results}
 
 
+On constate quoi (vérifier avec les chiffres)?
+\begin{itemize}
+\item cluster ou grid, entier ou réel, ne font pas de grosses différences
+
+\item bookkeeping? améliore souvent les choses, parfois au prix d'un retard au démarrage
+
+\item makhoul? se fait battre sur les grosses plateformes
+
+\item taille de plateforme?
+
+\item ratio comp/comm?
+
+\item option $k$? peut-être intéressant sur des plateformes fortement interconnectées (hypercube)
+
+\item volume de comm? souvent, besteffort/plain en fait plus. pourquoi?
+
+\item répartition initiale de la charge ?
+
+\item integer mode sur topo. line n'a jamais fini en plain? vérifier si ce n'est
+  pas à cause de l'effet d'escalier que bk est capable de gommer.
+
+\end{itemize}
+
+\begin{itshape}
 On veut montrer quoi ? :
 On veut montrer quoi ? :
+\FIXME{remove that part}
 
 1) best plus rapide que les autres (simple, makhoul)
 2) avantage virtual load
 
 1) best plus rapide que les autres (simple, makhoul)
 2) avantage virtual load
@@ -627,7 +671,6 @@ Topologies variées
 Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées
 Mais aussi simulation avec temps court qui montre que seul best converge
 
 Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées
 Mais aussi simulation avec temps court qui montre que seul best converge
 
-
 Expés avec ratio calcul/comm rapide et lent
 
 Quelques expés avec charge initiale aléatoire plutot que sur le premier proc
 Expés avec ratio calcul/comm rapide et lent
 
 Quelques expés avec charge initiale aléatoire plutot que sur le premier proc
@@ -641,14 +684,18 @@ On ne tient pas compte de la vitesse des liens donc on la considère homogène
 Prendre un réseau hétérogène et rendre processeur homogène
 
 Taille : 10 100 très gros
 Prendre un réseau hétérogène et rendre processeur homogène
 
 Taille : 10 100 très gros
+\end{itshape}
 
 \section{Conclusion and perspectives}
 
 
 \section{Conclusion and perspectives}
 
+\FIXME{conclude!}
+
 \begin{acknowledgements}
   Computations have been performed on the supercomputer facilities of
   the Mésocentre de calcul de Franche-Comté.
 \end{acknowledgements}
 
 \begin{acknowledgements}
   Computations have been performed on the supercomputer facilities of
   the Mésocentre de calcul de Franche-Comté.
 \end{acknowledgements}
 
+\FIXME{find and add more references}
 \bibliographystyle{spmpsci}
 \bibliography{biblio}
 
 \bibliographystyle{spmpsci}
 \bibliography{biblio}
 
@@ -663,4 +710,5 @@ Taille : 10 100 très gros
 
 % LocalWords:  Raphaël Couturier Arnaud Giersch Abderrahmane Sider Franche ij
 % LocalWords:  Bertsekas Tsitsiklis SimGrid DASUD Comté Béjaïa asynchronism ji
 
 % LocalWords:  Raphaël Couturier Arnaud Giersch Abderrahmane Sider Franche ij
 % LocalWords:  Bertsekas Tsitsiklis SimGrid DASUD Comté Béjaïa asynchronism ji
-% LocalWords:  ik isend irecv Cortés et al chan ctrl fifo Makhoul GFlop xml
+% LocalWords:  ik isend irecv Cortés et al chan ctrl fifo Makhoul GFlop xml pre
+% LocalWords:  FEMTO Makhoul's fca bdee cdde Contassot Vivier underlaid