X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/loba-papers.git/blobdiff_plain/1221c00d8b41a6532556dd303cef9666a8fab93c..99c4629e78a3a929c5ba423fc7d6f11cb495e6f1:/supercomp11/supercomp11.tex diff --git a/supercomp11/supercomp11.tex b/supercomp11/supercomp11.tex index 056e185..2f2dd31 100644 --- a/supercomp11/supercomp11.tex +++ b/supercomp11/supercomp11.tex @@ -195,11 +195,16 @@ condition or with a weaker condition. \section{Best effort strategy} \label{Best-effort} -In this section we describe a new load-balancing strategy that we call -\emph{best effort}. The general idea behind this strategy is that each -processor, that detects it has more load than some of its neighbors, -sends some load to the most of its less loaded neighbors, doing its -best to reach the equilibrium between those neighbors and himself. +In this section we describe a new load-balancing strategy that we call +\emph{best effort}. First, we explain the general idea behind this strategy, +and then we describe some variants of this basic strategy. + +\subsection{Basic strategy} + +The general idea behind the \emph{best effort} strategy is that each processor, +that detects it has more load than some of its neighbors, sends some load to the +most of its less loaded neighbors, doing its best to reach the equilibrium +between those neighbors and himself. More precisely, when a processor $i$ is in its load-balancing phase, he proceeds as following. @@ -246,12 +251,28 @@ he proceeds as following. \end{equation*} \end{enumerate} -\FIXME{describe parameter $k$} +\subsection{Leveling the amount to send} + +With the aforementioned basic strategy, each node does its best to reach the +equilibrium with its neighbors. Since each node may be taking the same kind of +decision at the same moment, there is the risk that a node receives load from +several of its neighbors, and then is temporary going off the equilibrium state. +This is particularly true with strongly connected applications. + +In order to reduce this effect, we add the ability to level the amount to send. +The idea, here, is to make smaller steps toward the equilibrium, such as a +potentially wrong decision has a lower impact. + +Concretely, once $s_{ij}$ has been evaluated as before, it is simply divided by +some configurable factor. That's what we named the ``parameter $k$'' in +Section~\ref{Results}. The amount of data to send is then $s_{ij}(t) = (\bar{x} +- x^i_j(t))/k$. +\FIXME{check the name ($k$)} \section{Other strategies} \label{Other} -\FIXME{Réécrire en angliche.} +\FIXME{Réécrire en anglais.} % \FIXME{faut-il décrire les stratégies makhoul et simple ?} @@ -497,8 +518,9 @@ an amount of load at less than 1\% of the load average, during an arbitrary number of computing iterations (2000 in our case). Note that this convergence detection was implemented in a centralized manner. -This is easy to do within the simulator, but it's obviously not realistic. In -a real application we would have chosen a decentralized convergence detection algorithm, like the one described in \cite{10.1109/TPDS.2005.2}. +This is easy to do within the simulator, but it's obviously not realistic. In a +real application we would have chosen a decentralized convergence detection +algorithm, like the one described in \cite{10.1109/TPDS.2005.2}. \paragraph{Platforms} @@ -507,16 +529,21 @@ settings, we simulated the executions on two sorts of platforms. These two sorts of platforms differ by their underlaid network topology. On the one hand, we have homogeneous platforms, modeled as a cluster. On the other hand, we have heterogeneous platforms, modeled as the interconnection of a number of clusters. + +The clusters were modeled by a fixed number of computing nodes interconnected +through a backbone link. Each computing node has a computing power of +1~GFlop/s, and is connected to the backbone by a network link whose bandwidth is +of 125~MB/s, with a latency of 50~$\mu$s. The backbone has a network bandwidth +of 2.25~GB/s, with a latency of 500~$\mu$s. + The heterogeneous platform descriptions were created by taking a subset of the Grid'5000 infrastructure\footnote{Grid'5000 is a French large scale experimental Grid (see \url{https://www.grid5000.fr/}).}, as described in the platform file \texttt{g5k.xml} distributed with SimGrid. Note that the heterogeneity of the -platform only comes from the network topology. The processor speeds, and -network bandwidths were normalized since our algorithms currently are not aware -of such heterogeneity. We arbitrarily chose to fix the processor speed to -1~GFlop/s, and the network bandwidth to 125~MB/s, with a latency of 50~$\mu$s, -except for the links between geographically distant sites, where the network -bandwidth was fixed to 2.25~GB/s, with a latency of 500~$\mu$s. +platform here only comes from the network topology. Indeed, since our +algorithms currently do not handle heterogeneous computing resources, the +processor speeds were normalized, and we arbitrarily chose to fix them to +1~GFlop/s. Then we derived each sort of platform with four different number of computing nodes: 16, 64, 256, and 1024 nodes. @@ -526,8 +553,10 @@ nodes: 16, 64, 256, and 1024 nodes. The distributed processes of the application were then logically organized along three possible topologies: a line, a torus or an hypercube. We ran tests where the total load was initially on an only node (at one end for the line topology), -and other tests where the load was initially randomly distributed across all -the participating nodes. +and other tests where the load was initially randomly distributed across all the +participating nodes. The total amount of load was fixed to a number of load +units equal to 1000 times the number of node. The average load is then of 1000 +load units. For each of the preceding configuration, we finally had to choose the computation and communication costs of a load unit. We chose them, such as to @@ -564,16 +593,44 @@ time. \paragraph{Metrics} -In order to evaluate and compare the different load balancing strategies, we -choose to measure the following metrics: +In order to evaluate and compare the different load balancing strategies we had +to define several metrics. Our goal, when choosing these metrics, was to have +something tending to a constant value, i.e. to have a measure which is not +changing anymore once the convergence state is reached. Moreover, we wanted to +have some normalized value, in order to be able to compare them across different +settings. +With these constraints in mind, we defined the following metrics: +% \begin{description} -\item[\textbf{average idle time:}] -\item[\textbf{average convergence date:}] -\item[\textbf{maximum convergence date:}] -\item[\textbf{data transfer amount:}] relative to the total data amount +\item[\textbf{average idle time:}] that's the total time spent, when the nodes + don't hold any share of load, and thus have nothing to compute. This total + time is divided by the number of participating nodes, such as to have a number + that can be compared between simulations of different sizes. + + This metric is expected to give an idea of the ability of the strategy to + diffuse the load quickly. A smaller value is better. + +\item[\textbf{average convergence date:}] that's the average of the dates when + all nodes reached the convergence state. The dates are measured as a number + of (simulated) seconds since the beginning of the simulation. + +\item[\textbf{maximum convergence date:}] that's the date when the last node + reached the convergence state. + + These two dates give an idea of the time needed by the strategy to reach the + equilibrium state. A smaller value is better. + +\item[\textbf{data transfer amount:}] that's the sum of the amount of all data + transfers during the simulation. This sum is then normalized by dividing it + by the total amount of data present in the system. + + This metric is expected to give an idea of the efficiency of the strategy in + terms of data movements, i.e. its ability to reach the equilibrium with fewer + transfers. Again, a smaller value is better. + \end{description} -\FIXME{dire à chaque fois ce que ça représente, et motiver le choix} + \subsection{Validation of our approaches} \label{Results} @@ -627,4 +684,4 @@ Taille : 10 100 très gros % LocalWords: Raphaël Couturier Arnaud Giersch Abderrahmane Sider Franche ij % LocalWords: Bertsekas Tsitsiklis SimGrid DASUD Comté Béjaïa asynchronism ji -% LocalWords: ik isend irecv Cortés et al chan ctrl fifo Makhoul +% LocalWords: ik isend irecv Cortés et al chan ctrl fifo Makhoul GFlop xml