X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/loba-papers.git/blobdiff_plain/1ccb8a3cdf8051ce59428e89b46322f8b6326db2..d883af6fcab703af629fd6ca368b7076b5b3384a:/supercomp11/supercomp11.tex diff --git a/supercomp11/supercomp11.tex b/supercomp11/supercomp11.tex index 2fc63f7..d1ff213 100644 --- a/supercomp11/supercomp11.tex +++ b/supercomp11/supercomp11.tex @@ -1,5 +1,8 @@ - \documentclass[smallextended]{svjour3} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{mathptmx} +\usepackage{courier} \usepackage{graphicx} \begin{document} @@ -28,7 +31,8 @@ \begin{abstract} Most of the time, asynchronous load balancing algorithms have extensively been -studied in a theoretical point of view. The Bertsekas and Tsitsiklis' algorithm +studied in a theoretical point of view. The Bertsekas and Tsitsiklis' +algorithm~\cite[section~7.4]{bertsekas+tsitsiklis.1997.parallel} is certainly the most well known algorithm for which the convergence proof is given. From a practical point of view, when a node wants to balance a part of its load to some of its neighbors, the strategy is not described. In this @@ -40,7 +44,7 @@ balancing algorithm is implemented most of the time can dissociate messages concerning load transfers and message concerning load information. In order to increase the converge of a load balancing algorithm, we propose a simple heuristic called \texttt{virtual load} which allows a node that receives an load -information message to integrate the load that it will receive latter in its +information message to integrate the load that it will receive later in its load (virtually) and consequently sends a (real) part of its load to some of its neighbors. In order to validate our approaches, we have defined a simulator based on SimGrid which allowed us to conduct many experiments. @@ -65,8 +69,9 @@ algorithm which is definitively a reference for many works. In their work, they proved that under classical hypotheses of asynchronous iterative algorithms and a special constraint avoiding \texttt{ping-pong} effect, an asynchronous iterative algorithm converge to the uniform load distribution. This work has -been extended by many authors. For example, DASUD proposes a version working with -integer load. {\bf Rajouter des choses ici}. +been extended by many authors. For example, +DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous} propose a version working +with integer load. {\bf Rajouter des choses ici}. Although the Bertsekas and Tsitsiklis' algorithm describes the condition to ensure the convergence, there is no indication or strategy to really implement @@ -135,8 +140,46 @@ Comment on the problem in the convergence condition. \subsection{Validation of our approaches} +On veut montrer quoi ? : + +1) best plus rapide que les autres (simple, makhoul) +2) avantage virtual load + +Est ce qu'on peut trouver des contre exemple? +Topologies variées + + +Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées +Mais aussi simulation avec temps court qui montre que seul best converge + + +Expés avec ratio calcul/comm rapide et lent + +Quelques expés avec charge initiale aléatoire plutot que sur le premier proc + +Cadre processeurs homogènes + +Topologies statiques + +On ne tient pas compte de la vitesse des liens donc on la considère homogène + +Prendre un réseau hétérogène et rendre processeur homogène + +Taille : 10 100 très gros + \section{Conclusion and perspectives} +\bibliographystyle{spmpsci} +\bibliography{biblio} \end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% ispell-local-dictionary: "american" +%%% End: + +% LocalWords: Raphaël Couturier Arnaud Giersch Abderrahmane Sider +% LocalWords: Bertsekas Tsitsiklis SimGrid DASUD