X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/loba-papers.git/blobdiff_plain/afe1c7b0d8f0330df0fa2b5c0bd2717454336e1d..2216578e9740572a34f3064af72777d9fc281fe2:/supercomp11/supercomp11.tex?ds=sidebyside diff --git a/supercomp11/supercomp11.tex b/supercomp11/supercomp11.tex index 4e1509f..6a48cd3 100644 --- a/supercomp11/supercomp11.tex +++ b/supercomp11/supercomp11.tex @@ -31,7 +31,8 @@ \begin{abstract} Most of the time, asynchronous load balancing algorithms have extensively been -studied in a theoretical point of view. The Bertsekas and Tsitsiklis' algorithm +studied in a theoretical point of view. The Bertsekas and Tsitsiklis' +algorithm~\cite[section~7.4]{bertsekas+tsitsiklis.1997.parallel} is certainly the most well known algorithm for which the convergence proof is given. From a practical point of view, when a node wants to balance a part of its load to some of its neighbors, the strategy is not described. In this @@ -51,7 +52,7 @@ based on SimGrid which allowed us to conduct many experiments. \end{abstract} - +\section{Introduction} Load balancing algorithms are extensively used in parallel and distributed applications in order to reduce the execution times. They can be applied in @@ -68,8 +69,135 @@ algorithm which is definitively a reference for many works. In their work, they proved that under classical hypotheses of asynchronous iterative algorithms and a special constraint avoiding \texttt{ping-pong} effect, an asynchronous iterative algorithm converge to the uniform load distribution. This work has -been extended by many authors. For example, DASUD propose a version working with -integer load. +been extended by many authors. For example, +DASUD~\cite{cortes+ripoll+cedo+al.2002.asynchronous} propose a version working +with integer load. {\bf Rajouter des choses ici}. + +Although the Bertsekas and Tsitsiklis' algorithm describes the condition to +ensure the convergence, there is no indication or strategy to really implement +the load distribution. In other word, a node can send a part of its load to one +or many of its neighbors while all the convergence conditions are +followed. Consequently, we propose a new strategy called \texttt{best effort} +that tries to balance the load of a node to all its less loaded neighbors while +ensuring that all the nodes concerned by the load balancing phase have the same +amount of load. Moreover, when real asynchronous applications are considered, +using asynchronous load balancing algorithms can reduce the execution +times. Most of the times, it is simpler to distinguish load information messages +from data migration messages. Formers ones allows a node to inform its +neighbors of its current load. These messages are very small, they can be sent +quite often. For example, if an computing iteration takes a significant times +(ranging from seconds to minutes), it is possible to send a new load information +message at each neighbor at each iteration. Latter messages contains data that +migrates from one node to another one. Depending on the application, it may have +sense or not that nodes try to balance a part of their load at each computing +iteration. But the time to transfer a load message from a node to another one is +often much nore longer that to time to transfer a load information message. So, +when a node receives the information that later it will receive a data message, +it can take this information into account and it can consider that its new load +is larger. Consequently, it can send a part of it real load to some of its +neighbors if required. We call this trick the \texttt{virtual load} mecanism. + + + +So, in this work, we propose a new strategy for improving the distribution of +the load and a simple but efficient trick that also improves the load +balacing. Moreover, we have conducted many simulations with simgrid in order to +validate our improvements are really efficient. Our simulations consider that in +order to send a message, a latency delays the sending and according to the +network performance and the message size, the time of the reception of the +message also varies. + +In the following of this paper, Section~\ref{BT algo} describes the Bertsekas +and Tsitsiklis' asynchronous load balancing algorithm. Moreover, we present a +possible problem in the convergence conditions. Section~\ref{Best-effort} +presents the best effort strategy which provides an efficient way to reduce the +execution times. In Section~\ref{Virtual load}, the virtual load mecanism is +proposed. Simulations allowed to show that both our approaches are valid using a +quite realistic model detailed in Section~\ref{Simulations}. Finally we give a +conclusion and some perspectives to this work. + + + + +\section{Bertsekas and Tsitsiklis' asynchronous load balancing algorithm} +\label{BT algo} + +In order prove the convergence of asynchronous iterative load balancing +Bertesekas and Tsitsiklis proposed a model +in~\cite{bertsekas+tsitsiklis.1997.parallel}. Here we recall some notations. +Consider that $N={1,...,n}$ processors are connected through a network. +Communication links are represented by a connected undirected graph $G=(N,V)$ +where $V$ is the set of links connecting differents processors. In this work, we +consider that processors are homogeneous for sake of simplicity. It is quite +easy to tackle the heterogeneous case~\cite{ElsMonPre02}. Load of processor $i$ +at time $t$ is represented by $x_i(t)\geq 0$. Let $V(i)$ be the set of +neighbors of processor $i$. Each processor $i$ has an estimate of the load of +each of its neighbors $j \in V(i)$ represented by $x_j^i(t)$. According to +asynchronism and communication delays, this estimate may be outdated. We also +consider that the load is described by a continuous variable. + +When a processor send a part of its load to one or some of its neighbors, the +transfer takes time to be completed. Let $s_{ij}(t)$ be the amount of load that +processor $i$ has transfered to processor $j$ at time $t$ and let $r_{ij}(t)$ be the +amount of load received by processor $j$ from processor $i$ at time $t$. Then +the amount of load of processor $i$ at time $t+1$ is given by: +\begin{equation} +x_i(t+1)=x_i(t)-\sum_{j\in V(i)} s_{ij}(t) + \sum_{j\in V(i)} r_{ji}(t) +\end{equation} + + +\section{Best effort strategy} +\label{Best-effort} + + + +\section{Virtual load} +\label{Virtual load} + +\section{Simulations} +\label{Simulations} + +In order to test and validate our approaches, we wrote a simulator +using the SimGrid +framework~\cite{casanova+legrand+quinson.2008.simgrid}. The process +model is detailed in the next section (\ref{Sim model}), then the +results of the simulations are presented in section~\ref{Results}. + +\subsection{Simulation model} +\label{Sim model} + +\subsection{Validation of our approaches} +\label{Results} + + +On veut montrer quoi ? : + +1) best plus rapide que les autres (simple, makhoul) +2) avantage virtual load + +Est ce qu'on peut trouver des contre exemple? +Topologies variées + + +Simulation avec temps définies assez long et on mesure la qualité avec : volume de calcul effectué, volume de données échangées +Mais aussi simulation avec temps court qui montre que seul best converge + + +Expés avec ratio calcul/comm rapide et lent + +Quelques expés avec charge initiale aléatoire plutot que sur le premier proc + +Cadre processeurs homogènes + +Topologies statiques + +On ne tient pas compte de la vitesse des liens donc on la considère homogène + +Prendre un réseau hétérogène et rendre processeur homogène + +Taille : 10 100 très gros + +\section{Conclusion and perspectives} \bibliographystyle{spmpsci}