-Several LB techniques, based on artificial intelligence, have also been proposed in the literature: genetic algorithm (GA) \cite{subrata2007artificial}, honey bee behavior \cite{krishna2013honey, kwok2004new}, tabu search \cite{subrata2007artificial} and fuzzy logic \cite{salimi2014task}. The main strength of these techniques comes from their ability to seek in large search spaces, which arises in many combinatorial optimization problems. For instance, the works in~\cite{cao2005grid, shen2014achieving} have been proposed to tackle the load balancing problem using the multiagent approach where each agent is responsible for load balancing for a subset of nodes in the network. The agent objective is to minimize jobs' response time and host idle time dynamically. In~\cite{GrosuC05}, the authors formulate the load balancing problem as a non-cooperative game among users. They use the Nash equilibrium as the solution of this game to optimize the response time of all jobs in the entire system. The proposed scheme guarantees the optimal task allocation for each user with low time complexity. A game theoretic approach to tackle the static load balancing problem is also investigated in~\cite{PenmatsaC11}. To provide fairness to all users in the system, the load balancing problem is formulated as a non-cooperative game among the users to minimize the response time of the submitted users' jobs. As in~\cite{GrosuC05}, the authors use the concept of Nash equilibrium as the solution of a non-cooperative game. Simulation results show that the proposed scheme offers near optimal solutions compared to other existing techniques in terms of fairness.
+Several LB techniques, based on artificial intelligence, have also been proposed in the literature: genetic algorithm (GA) \cite{subrata2007artificial}, honey bee behavior \cite{krishna2013honey, kwok2004new}, tabu search \cite{subrata2007artificial} and fuzzy logic \cite{salimi2014task}. The main strength of these techniques comes from their ability to seek in large search spaces, which arises in many combinatorial optimization problems. For instance, the works in~\cite{cao2005grid, shen2014achieving} have been proposed to tackle the load balancing problem using the multi-agent approach where each agent is responsible for load balancing for a subset of nodes in the network. The agent objective is to minimize jobs' response time and host idle time dynamically. In~\cite{GrosuC05}, the authors formulate the load balancing problem as a non-cooperative game among users. They use the Nash equilibrium as the solution of this game to optimize the response time of all jobs in the entire system. The proposed scheme guarantees the optimal task allocation for each user with low time complexity. A game theoretic approach to tackle the static load balancing problem is also investigated in~\cite{PenmatsaC11}. To provide fairness to all users in the system, the load balancing problem is formulated as a non-cooperative game among the users to minimize the response time of the submitted users' jobs. As in~\cite{GrosuC05}, the authors use the concept of Nash equilibrium as the solution of a non-cooperative game. Simulation results show that the proposed scheme offers near optimal solutions compared to other existing techniques in terms of fairness.