From: Arnaud Giersch Date: Wed, 1 Jun 2011 13:11:03 +0000 (+0200) Subject: Description best effort. X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/loba-papers.git/commitdiff_plain/e98f1ccead5d206a6da91407b7298efbf0d828d7?ds=sidebyside;hp=857b46f3102ac8bd783b10f189c18ac937ba7fe2 Description best effort. --- diff --git a/supercomp11/supercomp11.tex b/supercomp11/supercomp11.tex index edf5207..4cc971b 100644 --- a/supercomp11/supercomp11.tex +++ b/supercomp11/supercomp11.tex @@ -2,9 +2,12 @@ \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{mathptmx} +\usepackage{amsmath} \usepackage{courier} \usepackage{graphicx} +\newcommand{\abs}[1]{\lvert#1\rvert} % \abs{x} -> |x| + \begin{document} \title{Best effort strategy and virtual load @@ -180,16 +183,60 @@ condition or with a weaker condition. \section{Best effort strategy} \label{Best-effort} -\textbf{À traduire} Ordonne les voisins du moins chargé au plus chargé. -Trouve ensuite, en les prenant dans ce ordre, le nombre maximal de -voisins tels que tous ont une charge inférieure à la moyenne des -charges des voisins sélectionnés, et de soi-même. - -Les transferts de charge sont ensuite fait en visant cette moyenne pour -tous les voisins sélectionnés. On envoie une quantité de charge égale -à (moyenne - charge\_du\_voisin). - -~\\\textbf{Question} faut-il décrire les stratégies makhoul et simple ? +We will describe here a new load-balancing strategy that we called +\emph{best effort}. The general idea behind this strategy is, for a +processor, to send some load to the most of its neighbors, doing its +best to reach the equilibrium between those neighbors and himself. + +More precisely, when a processors $i$ is in its load-balancing phase, +he proceeds as following. +\begin{enumerate} +\item First, the neighbors are sorted in non-decreasing order of their + known loads $x^i_j(t)$. + +\item Then, this sorted list is traversed in order to find its largest + prefix such as the load of each selected neighbor is lesser than: + \begin{itemize} + \item the processor's own load, and + \item the mean of the loads of the selected neighbors and of the + processor's load. + \end{itemize} + Let's call $S_i(t)$ the set of the selected neighbors, and + $\bar{x}(t)$ the mean of the loads of the selected neighbors and of + the processor load: + \begin{equation*} + \bar{x}(t) = \frac{1}{\abs{S_i(t)} + 1} + \left( x_i(t) + \sum_{j\in S_i(t)} x^i_j(t) \right) + \end{equation*} + The following properties hold: + \begin{equation*} + \begin{cases} + S_i(t) \subset V(i) \\ + x^i_j(t) < x_i(t) & \forall j \in S_i(t) \\ + x^i_j(t) < \bar{x} & \forall j \in S_i(t) \\ + x^i_j(t) \leq x^i_k(t) & \forall j \in S_i(t), \forall k \in V(i) \setminus S_i(t) \\ + \bar{x} \leq x_i(t) + \end{cases} + \end{equation*} + +\item Once this selection is completed, processor $i$ sends to each of + the selected neighbor $j\in S_i(t)$ an amount of load $s_{ij}(t) = + \bar{x} - x^i_j(t)$. + + From the above equations, and notably from the definition of + $\bar{x}$, it can easily be verified that: + \begin{equation*} + \begin{cases} + x_i(t) - \sum_{j\in S_i(t)} s_{ij}(t) = \bar{x} \\ + x^i_j(t) + s_{ij}(t) = \bar{x} & \forall j \in S_i(t) + \end{cases} + \end{equation*} +\end{enumerate} + +\section{Other strategies} +\label{Other} + +\textbf{Question} faut-il décrire les stratégies makhoul et simple ? \paragraph{simple} Tentative de respecter simplement les conditions de Bertsekas. Parmi les voisins moins chargés que soi, on sélectionne :