]> AND Private Git Repository - loba.git/blob - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
a74b1149fcdc406358c7ad320aafd85a337d05af
[loba.git] / process.cpp
1 #include <algorithm>
2 #include <tr1/functional>
3 #include <iterator>
4 #include <stdexcept>
5 #include <sstream>
6 #include <xbt/log.h>
7 #include <xbt/time.h>
8
9 XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
10
11 #include "misc.h"
12 #include "options.h"
13 #include "tracing.h"
14
15 #include "process.h"
16
17 double process::total_load_init = 0.0;
18 double process::total_load_running = 0.0;
19 double process::total_load_exit = 0.0;
20
21 process::process(int argc, char* argv[])
22 {
23     if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
24         throw std::invalid_argument("bad or missing initial load parameter");
25
26     neigh.assign(argv + 2, argv + argc);
27
28     pneigh.reserve(neigh.size());
29     for (unsigned i = 0 ; i < neigh.size() ; i++) {
30         neighbor* ptr = &neigh[i];
31         m_host_t host = MSG_get_host_by_name(ptr->get_name());
32         pneigh.push_back(ptr);
33         rev_neigh.insert(std::make_pair(host, ptr));
34     }
35
36     comp = 0.0;
37
38     prev_load_broadcast = -1;   // force sending of load on first send_all()
39     expected_load = real_load;
40     total_load_running += real_load;
41     total_load_init += real_load;
42
43     ctrl_close_pending = data_close_pending = neigh.size();
44     close_received = false;
45     finalizing = false;
46
47     e_xbt_log_priority_t logp = xbt_log_priority_verbose;
48     if (!LOG_ISENABLED(logp))
49         return;
50     std::ostringstream oss;
51     oss << neigh.size() << " neighbor";
52     if (!neigh.empty()) {
53         oss << ESSE(neigh.size()) << ": ";
54         std::transform(neigh.begin(), neigh.end() - 1,
55                        std::ostream_iterator<const char*>(oss, ", "),
56                        std::tr1::mem_fn(&neighbor::get_name));
57         oss << neigh.back().get_name();
58     }
59     LOG1(logp, "Got %s.", oss.str().c_str());
60     print_loads(false, logp);
61 }
62
63 process::~process()
64 {
65     total_load_exit += real_load;
66     if (opt::bookkeeping) {
67         INFO4("Final load after %d:%d iterations: %g ; expected: %g",
68               lb_iter, comp_iter, real_load, expected_load);
69     } else {
70         INFO2("Final load after %d iterations: %g",
71               lb_iter, real_load);
72         if (lb_iter != comp_iter)
73             WARN2("lb_iter (%d) and comp_iter (%d) differ!",
74                   lb_iter, comp_iter);
75     }
76     VERB1("Total computation for this process: %g", comp);
77 }
78
79 int process::run()
80 {
81     double next_iter_after_date = 0.0;
82     INFO1("Initial load: %g", real_load);
83     VERB0("Starting...");
84     comp_iter = lb_iter = 0;
85     while (true) {
86         double ld = get_load();
87         if (ld > 0.0) {
88             double now = MSG_get_clock();
89             if (now < next_iter_after_date)
90                 MSG_process_sleep(next_iter_after_date - now);
91             next_iter_after_date = MSG_get_clock() + opt::min_iter_duration;
92
93             ++lb_iter;
94
95             if (opt::log_rate && lb_iter % opt::log_rate == 0) {
96                 if (opt::bookkeeping)
97                     INFO4("(%u:%u) current load: %g ; expected: %g",
98                           lb_iter, comp_iter, real_load, expected_load);
99                 else
100                     INFO2("(%u) current load: %g",
101                           lb_iter, real_load);
102             }
103
104             ld -= load_balance(ld);
105
106             print_loads(true, xbt_log_priority_debug);
107         }
108         set_load(ld);
109
110         // send load information, and load (data) if any
111         send_all();
112         if (real_load > 0.0) {
113             ++comp_iter;
114             compute();
115         }
116
117         if (opt::lb_maxiter && lb_iter >= opt::lb_maxiter) {
118             VERB2("Reached lb_maxiter: %d/%d", lb_iter, opt::lb_maxiter);
119             break;
120         }
121         if (opt::comp_maxiter && comp_iter >= opt::comp_maxiter) {
122             VERB2("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
123             break;
124         }
125         if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
126             VERB2("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
127             break;
128         }
129
130         // block on receiving unless there is something to compute or
131         // to send
132         double timeout;
133         if (real_load != 0 || get_load() != prev_load_broadcast)
134             timeout = 0.0;
135         else if (opt::min_iter_duration)
136             timeout = opt::min_iter_duration;
137         else
138             timeout = 1.0;
139         receive(timeout);
140
141         // one of our neighbor is finalizing
142         if (opt::exit_on_close && close_received) {
143             VERB0("Close received");
144             break;
145         }
146
147         // have no load and cannot receive anything
148         if (real_load == 0.0 && !may_receive()) {
149             VERB0("I'm a poor lonesome process, and I have no load...");
150             break;
151         }
152
153         // fixme: this check should be implemented with a distributed
154         // algorithm, and not a shared global variable!
155         // fixme: should this chunk be moved before call to receive() ?
156         if (100.0 * total_load_running / total_load_init <=
157             opt::load_ratio_threshold) {
158             VERB0("No more load to balance in system.");
159             break;
160         } else {
161             DEBUG1("still %g load to balance, continuing...", total_load_running);
162         }
163     }
164     VERB0("Going to finalize...");
165     finalize();
166
167     /* Open Questions :
168      * - definition of load on heterogeneous hosts ?
169      * - how to detect convergence ?
170      * - how to manage link failures ?
171      */
172
173     VERB0("Done.");
174     return 0;
175 }
176
177 double process::load_balance(double /*my_load*/)
178 {
179     if (lb_iter == 1)           // warn only once
180         WARN0("process::load_balance() is a no-op!");
181     return 0.0;
182 }
183
184 void process::compute()
185 {
186     if (real_load > 0.0) {
187         double flops = opt::comp_cost(real_load);
188         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
189         TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
190         DEBUG2("compute %g flop%s", flops, ESSE(flops));
191         MSG_task_execute(task);
192         comp += flops;
193         MSG_task_destroy(task);
194     } else {
195         DEBUG0("nothing to compute !");
196     }
197 }
198
199 void process::send1_no_bookkeeping(neighbor& nb)
200 {
201     if (real_load != prev_load_broadcast)
202         comm.send(nb.get_ctrl_mbox(), new message(message::INFO, real_load));
203     double load_to_send = nb.get_to_send();
204     if (load_to_send > 0.0) {
205         comm.send(nb.get_data_mbox(), new message(message::LOAD, load_to_send));
206         nb.set_to_send(0.0);
207     }
208 }
209
210 void process::send1_bookkeeping(neighbor& nb)
211 {
212     if (expected_load != prev_load_broadcast)
213         comm.send(nb.get_ctrl_mbox(),
214                   new message(message::INFO, expected_load));
215     double load_to_send;
216     double new_debt;
217     double debt_to_send = nb.get_to_send();
218     if (debt_to_send > 0.0) {
219         comm.send(nb.get_ctrl_mbox(),
220                   new message(message::CREDIT, debt_to_send));
221         nb.set_to_send(0.0);
222         new_debt = nb.get_debt() + debt_to_send;
223     } else {
224         new_debt = nb.get_debt();
225     }
226     if (real_load <= new_debt) {
227         load_to_send = real_load;
228         nb.set_debt(new_debt - load_to_send);
229         real_load = 0.0;
230     } else {
231         load_to_send = new_debt;
232         nb.set_debt(0.0);
233         real_load -= load_to_send;
234     }
235     if (load_to_send > 0.0)
236         comm.send(nb.get_data_mbox(), new message(message::LOAD, load_to_send));
237 }
238
239 void process::send_all()
240 {
241     using std::tr1::bind;
242     using std::tr1::placeholders::_1;
243
244     if (opt::bookkeeping) {
245         std::for_each(neigh.begin(), neigh.end(),
246                       bind(&process::send1_bookkeeping, this, _1));
247         prev_load_broadcast = expected_load;
248     } else {
249         std::for_each(neigh.begin(), neigh.end(),
250                       bind(&process::send1_no_bookkeeping, this, _1));
251         prev_load_broadcast = real_load;
252     }
253     comm.flush(false);
254 }
255
256 void process::receive(double timeout)
257 {
258     message* msg;
259     m_host_t from;
260
261     DEBUG2("%sblocking receive (%g)", "\0non-" + !timeout, timeout);
262     while (may_receive() && comm.recv(msg, from, timeout)) {
263         switch (msg->get_type()) {
264         case message::INFO: {
265             neighbor* n = rev_neigh[from];
266             n->set_load(msg->get_amount());
267             break;
268         }
269         case message::CREDIT:
270             expected_load += msg->get_amount();
271             break;
272         case message::LOAD: {
273             double ld = msg->get_amount();
274             real_load += ld;
275             if (finalizing)
276                 total_load_running -= ld;
277             break;
278         }
279         case message::CTRL_CLOSE:
280             ctrl_close_pending--;
281             close_received = true;
282             break;
283         case message::DATA_CLOSE:
284             data_close_pending--;
285             close_received = true;
286             break;
287         }
288         delete msg;
289         timeout = 0.0;          // only wait on first recv
290     }
291     comm.flush(false);
292 }
293
294 void process::finalize1(neighbor& nb)
295 {
296     comm.send(nb.get_ctrl_mbox(), new message(message::CTRL_CLOSE, 0.0));
297     comm.send(nb.get_data_mbox(), new message(message::DATA_CLOSE, 0.0));
298 }
299
300 void process::finalize()
301 {
302     using std::tr1::bind;
303     using std::tr1::placeholders::_1;
304
305     finalizing = true;
306     total_load_running -= real_load;
307
308     DEBUG2("send CLOSE to %lu neighbor%s",
309            (unsigned long )neigh.size(), ESSE(neigh.size()));
310     std::for_each(neigh.begin(), neigh.end(),
311                   bind(&process::finalize1, this, _1));
312
313     DEBUG2("wait for CLOSE from %lu neighbor%s",
314            (unsigned long )neigh.size(), ESSE(neigh.size()));
315     while (may_receive()) {
316         comm.flush(false);
317         receive(-1.0);
318     }
319
320     comm.flush(true);
321 }
322
323 #define print_loads_generic(vec, verbose, logp, cat)                    \
324     if (_XBT_LOG_ISENABLEDV((*cat), logp)) {                            \
325         using std::tr1::bind;                                           \
326         using std::tr1::placeholders::_1;                               \
327         XCLOG0(cat, logp, "Neighbor loads:");                           \
328         std::for_each(vec.begin(), vec.end(),                           \
329                       bind(&neighbor::print, _1, verbose, logp, cat));  \
330     } else ((void)0)
331
332 void process::print_loads(bool verbose,
333                           e_xbt_log_priority_t logp,
334                           xbt_log_category_t cat) const
335 {
336     print_loads_generic(neigh, verbose, logp, cat);
337 }
338
339 void process::print_loads_p(bool verbose,
340                             e_xbt_log_priority_t logp,
341                             xbt_log_category_t cat) const
342 {
343     print_loads_generic(pneigh, verbose, logp, cat);
344 }
345
346 #undef print_loads_generic
347
348 // Local variables:
349 // mode: c++
350 // End: