int process::process_counter = 0;
double process::total_load_average;
+double process::load_diff_threshold;
namespace {
total_load_init += real_load;
received_load = 0.0;
+ idle_duration = 0.0;
convergence = -1.0;
process_counter++;
total_load_average = total_load_running / process_counter;
+ load_diff_threshold = (opt::load_ratio_threshold +
+ opt::avg_load_ratio * total_load_average) / 100.0;
ctrl_close_pending = data_close_pending = neigh.size();
close_received = false;
print_loads(true, xbt_log_priority_debug);
}
+double process::get_iter_deviation() const
+{
+ double average_cost = opt::comp_cost(total_load_average);
+ // Do not count idle periods
+ double comp_iter_opt = acc.comp_amount / average_cost;
+/*
+ // Add iterations that could have been achieved while beeing idle
+ // (kept for documentation)
+ double self_speed = MSG_get_host_speed(MSG_host_self());
+ double average_duration = average_cost / self_speed;
+ comp_iter_opt += idle_duration / average_duration;
+*/
+ return comp_iter - comp_iter_opt;
+}
+
int process::run()
{
if (opt::log_rate >= 0) {
using std::placeholders::_1;
double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
+ double idle_since_date = 0.0;
while (still_running()) {
- // receive (do not block if there is something to compute)
- data_receive(real_load > 0.0 ? 0.0 : opt::min_comp_iter_duration);
+ // receive
+ // if there is something to compute, do not block
+ // else, block the duration of an *lb* iteration
+ data_receive(real_load > 0.0 ? 0.0 : opt::min_lb_iter_duration);
// send
comm.data_flush(false);
if (real_load == 0.0)
continue;
- double load_ratio =
- 100.0 * std::fabs(real_load / total_load_average - 1.0);
- if (convergence >= 0.0) {
- if (load_ratio > opt::avg_load_ratio) {
- XBT_VERB("current load has diverged: %g (%.4g%%)",
- real_load, load_ratio);
- convergence = -1.0;
- }
- } else {
- if (load_ratio <= opt::avg_load_ratio) {
- XBT_VERB("current load has converged: %g (%.4g%%)",
- real_load, load_ratio);
- convergence = MSG_get_clock();
- }
- }
+ convergence_check();
// compute
+ idle_duration += MSG_get_clock() - idle_since_date;
++comp_iter;
double flops = opt::comp_cost(real_load);
m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
add_comp_amount(flops);
MSG_task_destroy(task);
+ idle_since_date = MSG_get_clock();
+
sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
}
XBT_VERB("Going to finalize for %s...", __func__);
+ // Note: idle duration is not counted during finalization
finalizing = true;
XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
neigh.size(), ESSE(neigh.size()));
real_load += received_load;
received_load = 0.0;
total_load_running -= real_load;
+ convergence_check();
comm.data_flush(true);
}
+void process::convergence_check()
+{
+ double load_diff = std::fabs(real_load - total_load_average);
+ bool converged = load_diff <= load_diff_threshold;
+
+ if (convergence >= 0.0) {
+ if (!converged) {
+ XBT_VERB("current load has diverged: %g (%.4g%%)",
+ real_load, 100.0 * load_diff / total_load_average);
+ convergence = -1.0;
+ }
+ } else {
+ if (converged) {
+ XBT_VERB("current load has converged: %g (%.4g%%)",
+ real_load, 100.0 * load_diff / total_load_average);
+ convergence = MSG_get_clock();
+ }
+ }
+}
+
bool process::still_running()
{
static bool last_status = true;