]> AND Private Git Repository - loba.git/blobdiff - process.cpp
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Add platforms with 4096 nodes.
[loba.git] / process.cpp
index 07372dc0515f763e8f16729d4437c6b94c55df5d..b5531b0ce85eff0a0a20f6f5f9ce3a1276a71d5d 100644 (file)
@@ -16,10 +16,19 @@ XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(proc);
 
 #include "process.h"
 
 
 #include "process.h"
 
+mutex_t *process::proc_mutex;
+
 double process::total_load_init = 0.0;
 double process::total_load_running = 0.0;
 double process::total_load_exit = 0.0;
 
 double process::total_load_init = 0.0;
 double process::total_load_running = 0.0;
 double process::total_load_exit = 0.0;
 
+int process::process_counter = 0;
+double process::total_load_average;
+double process::average_load_ratio;
+double process::load_diff_threshold;
+
+std::atomic<int> process::convergence_counter(0);
+
 namespace {
 
     void sleep_until_date(double& date, double duration)
 namespace {
 
     void sleep_until_date(double& date, double duration)
@@ -56,10 +65,26 @@ process::process(int argc, char* argv[])
 
     prev_load_broadcast = -1;   // force sending of load on first send_all()
     expected_load = real_load;
 
     prev_load_broadcast = -1;   // force sending of load on first send_all()
     expected_load = real_load;
-    total_load_running += real_load;
-    total_load_init += real_load;
     received_load = 0.0;
 
     received_load = 0.0;
 
+    idle_duration = 0.0;
+    convergence = -1.0;
+
+    proc_mutex->acquire();
+    process_counter++;
+    convergence_counter++;
+    total_load_init += real_load;
+    total_load_running += real_load;
+    total_load_average = total_load_running / process_counter;
+    if (opt::avg_load_ratio >= 0.0)
+        average_load_ratio = opt::avg_load_ratio;
+    else
+        average_load_ratio = 100.0 *
+            (process_counter / -opt::avg_load_ratio) / total_load_average;
+    load_diff_threshold = (opt::load_ratio_threshold +
+                           average_load_ratio * total_load_average) / 100.0;
+    proc_mutex->release();
+
     ctrl_close_pending = data_close_pending = neigh.size();
     close_received = false;
     finalizing = false;
     ctrl_close_pending = data_close_pending = neigh.size();
     close_received = false;
     finalizing = false;
@@ -88,18 +113,41 @@ process::process(int argc, char* argv[])
 process::~process()
 {
     delete lb_thread;
 process::~process()
 {
     delete lb_thread;
+    proc_mutex->acquire();
     total_load_exit += real_load;
     total_load_exit += real_load;
+    proc_mutex->release();
     xbt_assert(received_load == 0.0,
                "received_load is %g, but should be 0.0 !", received_load);
     if (opt::log_rate < 0)
         return;
     XBT_INFO("Final load after %d:%d:%d iterations: %g",
              lb_iter, comp_iter, all_comp_iter, real_load);
     xbt_assert(received_load == 0.0,
                "received_load is %g, but should be 0.0 !", received_load);
     if (opt::log_rate < 0)
         return;
     XBT_INFO("Final load after %d:%d:%d iterations: %g",
              lb_iter, comp_iter, all_comp_iter, real_load);
+    if (convergence >= 0.0)
+        XBT_INFO("Convergence within %g%% was achieved at time %g",
+                 average_load_ratio, convergence);
+    else
+        XBT_INFO("Convergence within %g%% was not achieved",
+                 average_load_ratio);
     XBT_VERB("Expected load was: %g", expected_load);
     XBT_VERB("Total computation for this process: %g", get_comp_amount());
     print_loads(true, xbt_log_priority_debug);
 }
 
     XBT_VERB("Expected load was: %g", expected_load);
     XBT_VERB("Total computation for this process: %g", get_comp_amount());
     print_loads(true, xbt_log_priority_debug);
 }
 
+double process::get_iter_deviation() const
+{
+    double average_cost = opt::comp_cost(total_load_average); // fixme: get locked?
+    // Do not count idle periods
+    double comp_iter_opt = acc.comp_amount / average_cost;
+/*
+    // Add iterations that could have been achieved while beeing idle
+    // (kept for documentation)
+    double self_speed = MSG_get_host_speed(MSG_host_self());
+    double average_duration = average_cost / self_speed;
+    comp_iter_opt += idle_duration / average_duration;
+*/
+    return comp_iter - comp_iter_opt;
+}
+
 int process::run()
 {
     if (opt::log_rate >= 0) {
 int process::run()
 {
     if (opt::log_rate >= 0) {
@@ -182,9 +230,12 @@ void process::compute_loop()
     using std::placeholders::_1;
 
     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
     using std::placeholders::_1;
 
     double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
+    double idle_since_date = 0.0;
     while (still_running()) {
     while (still_running()) {
-        // receive (do not block if there is something to compute)
-        data_receive(real_load > 0.0 ? 0.0 : opt::min_comp_iter_duration);
+        // receive
+        // if there is something to compute, do not block
+        // else, block the duration of an *lb* iteration
+        data_receive(real_load > 0.0 ? 0.0 : opt::min_lb_iter_duration);
 
         // send
         comm.data_flush(false);
 
         // send
         comm.data_flush(false);
@@ -199,7 +250,10 @@ void process::compute_loop()
         if (real_load == 0.0)
             continue;
 
         if (real_load == 0.0)
             continue;
 
+        convergence_check();
+
         // compute
         // compute
+        idle_duration += MSG_get_clock() - idle_since_date;
         ++comp_iter;
         double flops = opt::comp_cost(real_load);
         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
         ++comp_iter;
         double flops = opt::comp_cost(real_load);
         m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
@@ -209,10 +263,13 @@ void process::compute_loop()
         add_comp_amount(flops);
         MSG_task_destroy(task);
 
         add_comp_amount(flops);
         MSG_task_destroy(task);
 
+        idle_since_date = MSG_get_clock();
+
         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
     }
 
     XBT_VERB("Going to finalize for %s...", __func__);
         sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
     }
 
     XBT_VERB("Going to finalize for %s...", __func__);
+    // Note: idle duration is not counted during finalization
     finalizing = true;
     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
               neigh.size(), ESSE(neigh.size()));
     finalizing = true;
     XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
               neigh.size(), ESSE(neigh.size()));
@@ -225,10 +282,39 @@ void process::compute_loop()
     }
     real_load += received_load;
     received_load = 0.0;
     }
     real_load += received_load;
     received_load = 0.0;
+    proc_mutex->acquire();
     total_load_running -= real_load;
     total_load_running -= real_load;
+    proc_mutex->release();
+    convergence_check();
     comm.data_flush(true);
 }
 
     comm.data_flush(true);
 }
 
+void process::convergence_check()
+{
+    double average = total_load_average; // fixme: get locked?
+    double load_diff = std::fabs(real_load - average);
+    bool converged = load_diff <= load_diff_threshold;
+
+    if (converged) {
+        if (convergence < 0) {
+            XBT_VERB("current load has converged: %g (%.4g%%)",
+                     real_load,  100.0 * load_diff / average);
+            convergence = MSG_get_clock();
+            local_convergence_counter = opt::exit_on_convergence;
+        }
+        if (local_convergence_counter > 0 && --local_convergence_counter == 0)
+                --convergence_counter;
+    } else {
+        if (convergence >= 0.0) {
+            XBT_VERB("current load has diverged: %g (%.4g%%)",
+                     real_load, 100.0 * load_diff / average);
+            convergence = -1.0;
+            if (local_convergence_counter == 0)
+                ++convergence_counter;
+        }
+    }
+}
+
 bool process::still_running()
 {
     static bool last_status = true;
 bool process::still_running()
 {
     static bool last_status = true;
@@ -252,6 +338,10 @@ bool process::still_running()
         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
         last_status = false;
 
         XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
         last_status = false;
 
+    } else if (opt::exit_on_convergence && convergence_counter == 0) {
+        XBT_VERB("Global convergence detected");
+        last_status = false;
+
     } else if (opt::exit_on_close && close_received) {
         XBT_VERB("Close received");
         last_status = false;
     } else if (opt::exit_on_close && close_received) {
         XBT_VERB("Close received");
         last_status = false;
@@ -261,7 +351,7 @@ bool process::still_running()
         last_status = false;
 
     } else if (100.0 * total_load_running / total_load_init <=
         last_status = false;
 
     } else if (100.0 * total_load_running / total_load_init <=
-               opt::load_ratio_threshold) {
+               opt::load_ratio_threshold) { // fixme: get locked?
         // fixme: this check should be implemented with a distributed
         // algorithm, and not a shared global variable!
         XBT_VERB("No more load to balance in system.");
         // fixme: this check should be implemented with a distributed
         // algorithm, and not a shared global variable!
         XBT_VERB("No more load to balance in system.");
@@ -331,7 +421,11 @@ void process::data_send(neighbor& nb)
         else
             excess_load = real_load;
 
         else
             excess_load = real_load;
 
-        double balance = nb.get_debt() - nb.get_credit();
+        double balance;
+        if (nb.get_credit() > 0.0)
+            balance = nb.get_debt() - nb.get_credit();
+        else
+            balance = nb.get_debt();
         load_to_send = std::min(excess_load,
                                 std::max(0.0, balance));
 
         load_to_send = std::min(excess_load,
                                 std::max(0.0, balance));