XBT_LOG_NEW_SUBCATEGORY(comm, simu, "Messages from asynchronous pipes");
XBT_LOG_NEW_SUBCATEGORY(proc, simu, "Messages from base process class");
XBT_LOG_NEW_SUBCATEGORY(loba, simu, "Messages from load-balancer");
+XBT_LOG_NEW_SUBCATEGORY(thrd, simu, "Messages from thread wrapper class");
XBT_LOG_EXTERNAL_DEFAULT_CATEGORY(main);
#include "misc.h"
#include "options.h"
#include "process.h"
+#include "statistics.h"
+#include "synchro.h"
#include "timer.h"
+#include "tracing.h"
#include "version.h"
-// Failure exit status
-enum {
- EXIT_NO_FAILURE = 0x00, // no error
- EXIT_FAILURE_ARGS = 0x01, // bad arguments
- EXIT_FAILURE_INIT = 0x02, // failed to initialize simulator
- EXIT_FAILURE_SIMU = 0x04, // simulation failed
- EXIT_FAILURE_CLEAN = 0x08, // error at cleanup
-};
+namespace {
+ // Failure exit status
+ enum {
+ EXIT_NO_FAILURE = 0x00, // no error
+ EXIT_FAILURE_ARGS = 0x01, // bad arguments
+ EXIT_FAILURE_INIT = 0x02, // failed to initialize simulator
+ EXIT_FAILURE_SIMU = 0x04, // simulation failed
+ EXIT_FAILURE_CLEAN = 0x08, // error at cleanup
+ };
-int simulation_main(int argc, char* argv[])
+ mutex_t proc_mutex;
+ condition_t proc_cond;
+ unsigned proc_counter = 0;
+
+ statistics comps;
+ statistics loads;
+
+}
+
+static int simulation_main(int argc, char* argv[])
{
int result;
process* proc;
try {
proc = opt::loba_algorithms.new_instance(opt::loba_algo, argc, argv);
+
+ proc_mutex.acquire();
+ ++proc_counter;
+ proc_mutex.release();
+
result = proc->run();
+
+ proc_mutex.acquire();
+ comps.push(proc->get_comp());
+ loads.push(proc->get_real_load());
+
+ // Synchronization barrier...
+ // The goal is to circumvent a limitation in SimGrid (at least
+ // in version 3.5): a process must be alive when another one
+ // destroys a communication they had together.
+
+ --proc_counter;
+ proc_cond.broadcast();
+ while (proc_counter > 0)
+ proc_cond.wait(proc_mutex);
+ proc_mutex.release();
+
delete proc;
}
catch (std::invalid_argument& e) {
return result;
}
-void check_for_lost_load()
+static void check_for_lost_load()
{
- const double threshold = 1e-4;
double total_init = process::get_total_load_init();
+
double total_exit = process::get_total_load_exit();
double lost = total_init - total_exit;
- double lost_ratio = 100 * lost / total_init;
- if (lost_ratio < -threshold) {
- CRITICAL2("Gained load at exit! %g (%g%%) <============",
+ double lost_ratio = 100.0 * lost / total_init;
+ if (lost_ratio < -opt::load_ratio_threshold)
+ XBT_ERROR("Gained load at exit! %g (%g%%) <============",
+ -lost, -lost_ratio);
+ else if (lost_ratio > opt::load_ratio_threshold)
+ XBT_ERROR("Lost load at exit! %g (%g%%) <============",
lost, lost_ratio);
- } else if (lost_ratio > threshold) {
- CRITICAL2("Lost load at exit! %g (%g%%) <============",
- lost, lost_ratio);
- } else {
- DEBUG2("Total load at exit looks good: %g (%g%%)", lost, lost_ratio);
- }
-
+ else
+ XBT_VERB("Total load at exit looks good: %g (%g%%)", lost, lost_ratio);
+
+ double total_running = process::get_total_load_running();
+ double running_ratio = 100.0 * total_running / total_init;
+ if (running_ratio < -opt::load_ratio_threshold)
+ XBT_ERROR("Negative running load at exit! %g (%g%%) <============",
+ total_running, running_ratio);
+ else if (running_ratio > opt::load_ratio_threshold)
+ XBT_ERROR("Remaining running load at exit! %g (%g%%) <============",
+ total_running, running_ratio);
+ else
+ XBT_VERB("Running load at exit looks good: %g (%g%%)",
+ total_running, running_ratio);
}
+#define PR_STATS(descr, st) \
+ XBT_INFO("| %.*s: %g / %g / %g", 39, \
+ descr " total/avg./stddev. at exit.........................", \
+ st.get_sum(), st.get_mean(), st.get_stddev())
+
int main(int argc, char* argv[])
{
// Note: variables used after THROW must be declared as volatile.
MSG_global_init(&argc, argv);
// Parse global parameters
- int parse_res = opt::parse_args(&argc, argv);
+ bool parse_res = opt::parse_args(&argc, argv);
if (!parse_res
|| opt::version_requested || opt::help_requested) {
if (opt::version_requested)
MSG_clean();
exit(parse_res ? EXIT_NO_FAILURE : EXIT_FAILURE_ARGS);
}
- INFO3("%s v%s (%s)", opt::program_name.c_str(), version::num.c_str(),
+ XBT_INFO("%s v%s (%s)", opt::program_name.c_str(), version::num.c_str(),
version::date.c_str());
opt::print();
if (!opt::auto_depl::nhosts)
opt::auto_depl::nhosts = hostdata::size();
if (opt::auto_depl::nhosts > hostdata::size()) {
- WARN2("%u hosts is too much: limiting to %u",
- opt::auto_depl::nhosts, (unsigned )hostdata::size());
+ XBT_WARN("%u hosts is too much: limiting to %zu",
+ opt::auto_depl::nhosts, hostdata::size());
opt::auto_depl::nhosts = hostdata::size();
}
if (!opt::auto_depl::load)
MSG_launch_application(opt::deployment_file.c_str());
}
+ // Register tracing categories
+ TRACE_category(TRACE_CAT_COMP);
+ TRACE_category(TRACE_CAT_CTRL);
+ TRACE_category(TRACE_CAT_DATA);
+
exit_status = EXIT_FAILURE_SIMU; // =====
// Launch the MSG simulation.
- INFO1("Starting simulation at %f...", MSG_get_clock());
+ XBT_INFO("Starting simulation at %f...", MSG_get_clock());
res = MSG_main();
simulated_time = MSG_get_clock();
- INFO1("Simulation ended at %f.", simulated_time);
- check_for_lost_load();
+ XBT_INFO("Simulation ended at %f.", simulated_time);
+
if (res != MSG_OK)
THROW1(0, 0, "MSG_main() failed with status %#x", res);
int len = strlen(ex.msg);
if (len > 0 && ex.msg[len - 1] == '\n')
ex.msg[len - 1] = '\0'; // strip the ending '\n'
- ERROR1("%s", ex.msg);
- DEBUG3("Error from %s() in %s:%d", ex.func, ex.file, ex.line);
+ XBT_ERROR("%s", ex.msg);
+ XBT_DEBUG("Error from %s() in %s:%d", ex.func, ex.file, ex.line);
xbt_ex_free(ex);
}
hostdata::destroy();
res = MSG_clean();
if (res != MSG_OK) {
- ERROR1("MSG_clean() failed with status %#x", res);
+ XBT_ERROR("MSG_clean() failed with status %#x", res);
exit_status |= EXIT_FAILURE_CLEAN;
}
// Report final simulation status.
if (simulated_time >= 0.0) {
simulation_time.stop();
- INFO0(",----[ Results ]");
- INFO1("| Total simulated time...: %g", simulated_time);
- INFO1("| Total simulation time..: %g", simulation_time.duration());
- INFO0("`----");
+ check_for_lost_load();
+ XBT_INFO(",----[ Results ]");
+ PR_STATS("Load", loads);
+ PR_STATS("Computation", comps);
+ XBT_INFO("| Total simulated time...................: %g",
+ simulated_time);
+ XBT_INFO("| Total simulation time..................: %g",
+ simulation_time.duration());
+ XBT_INFO("`----");
}
if (exit_status)
- ERROR1("Simulation failed (%#x).", exit_status);
+ XBT_ERROR("Simulation failed (%#x).", exit_status);
else
- INFO0("Simulation succeeded.");
+ XBT_INFO("Simulation succeeded.");
return exit_status;
}