#include <algorithm>
-#include <tr1/functional>
+#include <cmath>
+#include <functional>
#include <iterator>
+#include <numeric>
#include <stdexcept>
#include <sstream>
#include <xbt/log.h>
#include "process.h"
+mutex_t *process::proc_mutex;
+
double process::total_load_init = 0.0;
double process::total_load_running = 0.0;
double process::total_load_exit = 0.0;
+int process::process_counter = 0;
+double process::total_load_average;
+double process::average_load_ratio;
+double process::load_diff_threshold;
+
+std::atomic<int> process::convergence_counter(0);
+
namespace {
- void sleep_until_date(double& date, double duration = 0.0)
+ void sleep_until_date(double& date, double duration)
{
double sleep_duration = date - MSG_get_clock();
if (sleep_duration > 0.0)
if (argc < 2 || !(std::istringstream(argv[1]) >> real_load))
throw std::invalid_argument("bad or missing initial load parameter");
+ double iload = std::trunc(real_load);
+ if (opt::integer_transfer && real_load != iload) {
+ XBT_WARN("Initial load %g is not an integer. Truncate it.",
+ real_load);
+ real_load = iload;
+ }
+
neigh.assign(argv + 2, argv + argc);
pneigh.reserve(neigh.size());
for (unsigned i = 0 ; i < neigh.size() ; i++) {
neighbor* ptr = &neigh[i];
- m_host_t host = MSG_get_host_by_name(ptr->get_name());
+ msg_host_t host = MSG_get_host_by_name(ptr->get_name());
pneigh.push_back(ptr);
rev_neigh.insert(std::make_pair(host, ptr));
}
- comp = 0.0;
-
prev_load_broadcast = -1; // force sending of load on first send_all()
expected_load = real_load;
- total_load_running += real_load;
+ received_load = 0.0;
+
+ idle_duration = 0.0;
+ convergence = -1.0;
+
+ proc_mutex->acquire();
+ process_counter++;
+ convergence_counter++;
total_load_init += real_load;
+ total_load_running += real_load;
+ total_load_average = total_load_running / process_counter;
+ if (opt::avg_load_ratio >= 0.0)
+ average_load_ratio = opt::avg_load_ratio;
+ else
+ average_load_ratio = 100.0 *
+ (process_counter / -opt::avg_load_ratio) / total_load_average;
+ load_diff_threshold = (opt::load_ratio_threshold +
+ average_load_ratio * total_load_average) / 100.0;
+ proc_mutex->release();
ctrl_close_pending = data_close_pending = neigh.size();
close_received = false;
finalizing = false;
- comp_iter = lb_iter = 0;
+ all_comp_iter = comp_iter = lb_iter = 0;
lb_thread = new_msg_thread("loba",
- std::tr1::bind(&process::load_balance_loop,
- this));
+ std::bind(&process::load_balance_loop, this));
e_xbt_log_priority_t logp = xbt_log_priority_verbose;
if (!LOG_ISENABLED(logp))
oss << ESSE(neigh.size()) << ": ";
std::transform(neigh.begin(), neigh.end() - 1,
std::ostream_iterator<const char*>(oss, ", "),
- std::tr1::mem_fn(&neighbor::get_name));
+ std::mem_fn(&neighbor::get_name));
oss << neigh.back().get_name();
}
XBT_LOG(logp, "Got %s.", oss.str().c_str());
process::~process()
{
delete lb_thread;
+ proc_mutex->acquire();
total_load_exit += real_load;
+ proc_mutex->release();
+ xbt_assert(received_load == 0.0,
+ "received_load is %g, but should be 0.0 !", received_load);
if (opt::log_rate < 0)
return;
- XBT_INFO("Final load after %d:%d iterations: %g",
- lb_iter, comp_iter, real_load);
+ XBT_INFO("Final load after %d:%d:%d iterations: %g",
+ lb_iter, comp_iter, all_comp_iter, real_load);
+ if (convergence >= 0.0)
+ XBT_INFO("Convergence within %g%% was achieved at time %g",
+ average_load_ratio, convergence);
+ else
+ XBT_INFO("Convergence within %g%% was not achieved",
+ average_load_ratio);
XBT_VERB("Expected load was: %g", expected_load);
- XBT_VERB("Total computation for this process: %g", comp);
+ XBT_VERB("Total computation for this process: %g", get_comp_amount());
+ print_loads(true, xbt_log_priority_debug);
+}
+
+double process::get_iter_deviation() const
+{
+ double average_cost = opt::comp_cost(total_load_average); // fixme: get locked?
+ // Do not count idle periods
+ double comp_iter_opt = acc.comp_amount / average_cost;
+/*
+ // Add iterations that could have been achieved while beeing idle
+ // (kept for documentation)
+ double self_speed = MSG_get_host_speed(MSG_host_self());
+ double average_duration = average_cost / self_speed;
+ comp_iter_opt += idle_duration / average_duration;
+*/
+ return comp_iter - comp_iter_opt;
}
int process::run()
void process::load_balance_loop()
{
- using std::tr1::bind;
- using std::tr1::placeholders::_1;
+ using std::placeholders::_1;
double next_iter_after_date = MSG_get_clock() + opt::min_lb_iter_duration;
while (still_running()) {
++lb_iter;
}
+ ctrl_receive(0.0);
+
+ mutex.acquire();
+ if (!opt::bookkeeping)
+ expected_load = real_load - get_sum_of_to_send();
+ // nothing to do with opt::bookkeeping
+
if (opt::log_rate && lb_iter % opt::log_rate == 0) {
- XBT_INFO("(%u:%u) current load: %g", lb_iter, comp_iter, real_load);
+ XBT_INFO("(%u:%u:%u) current load: %g",
+ lb_iter, comp_iter, all_comp_iter, real_load);
XBT_VERB("... expected load: %g", expected_load);
}
- if (get_load() > 0.0)
+ if (expected_load > 0.0)
load_balance();
print_loads(true, xbt_log_priority_debug);
// send
+ comm.ctrl_flush(false);
std::for_each(neigh.begin(), neigh.end(),
- bind(&process::ctrl_send, this, _1));
- prev_load_broadcast = get_load();
+ std::bind(&process::ctrl_send, this, _1));
+ prev_load_broadcast = expected_load;
+ mutex.release();
sleep_until_date(next_iter_after_date, opt::min_lb_iter_duration);
- ctrl_receive(0.0);
-
- comm.ctrl_flush(false);
}
XBT_VERB("Going to finalize for %s...", __func__);
XBT_DEBUG("send CTRL_CLOSE to %zu neighbor%s",
neigh.size(), ESSE(neigh.size()));
std::for_each(neigh.begin(), neigh.end(),
- bind(&process::ctrl_close, this, _1));
+ std::bind(&process::ctrl_close, this, _1));
while (ctrl_close_pending) {
comm.ctrl_flush(false);
- XBT_DEBUG("waiting for %d CTRL CLOSE", ctrl_close_pending);
+ XBT_DEBUG("waiting for %d CTRL_CLOSE", ctrl_close_pending);
ctrl_receive(-1.0);
}
comm.ctrl_flush(true);
void process::compute_loop()
{
- using std::tr1::bind;
- using std::tr1::placeholders::_1;
+ using std::placeholders::_1;
double next_iter_after_date = MSG_get_clock() + opt::min_comp_iter_duration;
+ double idle_since_date = 0.0;
while (still_running()) {
// receive
- if (real_load > 0.0)
- data_receive(0.0);
- else
- data_receive(opt::min_comp_iter_duration);
+ // if there is something to compute, do not block
+ // else, block the duration of an *lb* iteration
+ data_receive(real_load > 0.0 ? 0.0 : opt::min_lb_iter_duration);
+ // send
comm.data_flush(false);
+ mutex.acquire();
+ real_load += received_load;
+ received_load = 0.0;
+ std::for_each(neigh.begin(), neigh.end(),
+ std::bind(&process::data_send, this, _1));
+ mutex.release();
+ ++all_comp_iter;
if (real_load == 0.0)
continue;
- // send
- std::for_each(neigh.begin(), neigh.end(),
- bind(&process::data_send, this, _1));
+ convergence_check();
// compute
+ idle_duration += MSG_get_clock() - idle_since_date;
++comp_iter;
double flops = opt::comp_cost(real_load);
- m_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
- TRACE_msg_set_task_category(task, TRACE_CAT_COMP);
+ msg_task_t task = MSG_task_create("computation", flops, 0.0, NULL);
+ // MSG_task_set_category(task, TRACE_CAT_COMP);
XBT_DEBUG("compute %g flop%s", flops, ESSE(flops));
MSG_task_execute(task);
- comp += flops;
+ add_comp_amount(flops);
MSG_task_destroy(task);
+ idle_since_date = MSG_get_clock();
+
sleep_until_date(next_iter_after_date, opt::min_comp_iter_duration);
}
XBT_VERB("Going to finalize for %s...", __func__);
- // last send, for not losing load scheduled to be sent
- std::for_each(neigh.begin(), neigh.end(),
- bind(&process::data_send, this, _1));
+ // Note: idle duration is not counted during finalization
finalizing = true;
- total_load_running -= real_load;
XBT_DEBUG("send DATA_CLOSE to %zu neighbor%s",
neigh.size(), ESSE(neigh.size()));
std::for_each(neigh.begin(), neigh.end(),
- bind(&process::data_close, this, _1));
+ std::bind(&process::data_close, this, _1));
while (data_close_pending) {
comm.data_flush(false);
- XBT_DEBUG("waiting for %d DATA CLOSE", data_close_pending);
+ XBT_DEBUG("waiting for %d DATA_CLOSE", data_close_pending);
data_receive(-1.0);
}
+ real_load += received_load;
+ received_load = 0.0;
+ proc_mutex->acquire();
+ total_load_running -= real_load;
+ proc_mutex->release();
+ convergence_check();
comm.data_flush(true);
}
+void process::convergence_check()
+{
+ double average = total_load_average; // fixme: get locked?
+ double load_diff = std::fabs(real_load - average);
+ bool converged = load_diff <= load_diff_threshold;
+
+ if (converged) {
+ if (convergence < 0) {
+ XBT_VERB("current load has converged: %g (%.4g%%)",
+ real_load, 100.0 * load_diff / average);
+ convergence = MSG_get_clock();
+ local_convergence_counter = opt::exit_on_convergence;
+ }
+ if (local_convergence_counter > 0 && --local_convergence_counter == 0)
+ --convergence_counter;
+ } else {
+ if (convergence >= 0.0) {
+ XBT_VERB("current load has diverged: %g (%.4g%%)",
+ real_load, 100.0 * load_diff / average);
+ convergence = -1.0;
+ if (local_convergence_counter == 0)
+ ++convergence_counter;
+ }
+ }
+}
+
bool process::still_running()
{
static bool last_status = true;
if (!last_status) {
/* nop */
+ } else if (opt::exit_request) {
+ XBT_VERB("Global exit requested");
+ last_status = false;
+
} else if (opt::time_limit && MSG_get_clock() >= opt::time_limit) {
XBT_VERB("Reached time limit: %g/%g", MSG_get_clock(), opt::time_limit);
last_status = false;
XBT_VERB("Reached comp_maxiter: %d/%d", comp_iter, opt::comp_maxiter);
last_status = false;
+ } else if (opt::exit_on_convergence && convergence_counter == 0) {
+ XBT_VERB("Global convergence detected");
+ last_status = false;
+
} else if (opt::exit_on_close && close_received) {
XBT_VERB("Close received");
last_status = false;
last_status = false;
} else if (100.0 * total_load_running / total_load_init <=
- opt::load_ratio_threshold) {
+ opt::load_ratio_threshold) { // fixme: get locked?
// fixme: this check should be implemented with a distributed
// algorithm, and not a shared global variable!
XBT_VERB("No more load to balance in system.");
return last_status;
}
+double process::get_sum_of_to_send() const
+{
+ using std::placeholders::_1;
+ using std::placeholders::_2;
+
+ return std::accumulate(neigh.begin(), neigh.end(), 0.0,
+ std::bind(std::plus<double>(), _1,
+ std::bind(&neighbor::get_to_send, _2)));
+}
+
void process::load_balance()
{
if (lb_iter == 1) // warn only once
void process::send(neighbor& nb, double amount)
{
- set_load(get_load() - amount);
+ expected_load -= amount;
nb.set_to_send(nb.get_to_send() + amount);
nb.set_load(nb.get_load() + amount);
}
void process::ctrl_send(neighbor& nb)
{
- double info_to_send = get_load();
- if (info_to_send != prev_load_broadcast)
- comm.ctrl_send(nb.get_ctrl_mbox(),
- new message(message::INFO, info_to_send));
- if (opt::bookkeeping) {
- double debt_to_send = nb.get_to_send();
+ double info_to_send = expected_load;
+ double debt_to_send;
+ if (opt::bookkeeping) { // bookkeeping
+ debt_to_send = nb.get_to_send();
if (debt_to_send > 0.0) {
nb.set_to_send(0.0);
nb.set_debt(nb.get_debt() + debt_to_send);
- comm.ctrl_send(nb.get_ctrl_mbox(),
- new message(message::CREDIT, debt_to_send));
}
+ } else { // !bookkeeping
+ debt_to_send = 0.0;
+ }
+ if (info_to_send != prev_load_broadcast || debt_to_send > 0.0) {
+ message* msg = new message(message::CTRL, info_to_send, debt_to_send);
+ add_ctrl_send_mesg(msg->get_size());
+ comm.ctrl_send(nb.get_ctrl_mbox(), msg);
}
}
+double process::compute_load_to_send(double desired)
+{
+ if (opt::integer_transfer)
+ desired = std::floor(desired);
+ return desired >= opt::min_transfer_amount ? desired : 0.0;
+}
+
void process::data_send(neighbor& nb)
{
double load_to_send;
- if (opt::bookkeeping) {
- if (real_load <= nb.get_debt()) {
- load_to_send = real_load;
+ if (opt::bookkeeping) { // bookkeeping
+ double excess_load; // load amount we are able to send
+ if (opt::egocentric)
+ excess_load = std::max(0.0, real_load - expected_load);
+ else
+ excess_load = real_load;
+
+ double balance;
+ if (nb.get_credit() > 0.0)
+ balance = nb.get_debt() - nb.get_credit();
+ else
+ balance = nb.get_debt();
+ load_to_send = std::min(excess_load,
+ std::max(0.0, balance));
+
+ // adjust load to send (rounding, truncation, etc.)
+ load_to_send = compute_load_to_send(load_to_send);
+ if (load_to_send > 0.0)
nb.set_debt(nb.get_debt() - load_to_send);
- real_load = 0.0;
- } else {
- load_to_send = nb.get_debt();
- nb.set_debt(0.0);
- real_load -= load_to_send;
- }
- } else {
- load_to_send = nb.get_to_send();
- nb.set_to_send(0.0);
- // do not update real_load here
+ } else { // !bookkeeping
+ load_to_send = compute_load_to_send(nb.get_to_send());
+ if (load_to_send > 0.0)
+ nb.set_to_send(nb.get_to_send() - load_to_send);
+ }
+ real_load -= load_to_send;
+ while (load_to_send > 0.0) {
+ double amount;
+ if (opt::max_transfer_amount)
+ amount = std::min(load_to_send, opt::max_transfer_amount);
+ else
+ amount = load_to_send;
+ message* msg = new message(message::DATA, amount);
+ add_data_send_mesg(msg->get_size());
+ comm.data_send(nb.get_data_mbox(), msg);
+ load_to_send -= amount;
}
- if (load_to_send > 0.0)
- comm.data_send(nb.get_data_mbox(),
- new message(message::LOAD, load_to_send));
}
void process::ctrl_close(neighbor& nb)
void process::ctrl_receive(double timeout)
{
message* msg;
- m_host_t from;
+ msg_host_t from;
XBT_DEBUG("%sblocking receive on ctrl (%g)", "\0non-" + !timeout, timeout);
while (ctrl_close_pending && comm.ctrl_recv(msg, from, timeout)) {
+ if (msg->get_type() != message::CTRL_CLOSE)
+ add_ctrl_recv_mesg(msg->get_size());
handle_message(msg, from);
timeout = 0.0;
}
void process::data_receive(double timeout)
{
message* msg;
- m_host_t from;
+ msg_host_t from;
XBT_DEBUG("%sblocking receive on data (%g)", "\0non-" + !timeout, timeout);
while (data_close_pending && comm.data_recv(msg, from, timeout)) {
+ if (msg->get_type() != message::DATA_CLOSE)
+ add_data_recv_mesg(msg->get_size());
handle_message(msg, from);
timeout = 0.0;
}
}
-void process::handle_message(message* msg, m_host_t from)
+void process::handle_message(message* msg, msg_host_t from)
{
switch (msg->get_type()) {
- case message::INFO: {
+ case message::CTRL: {
neighbor* n = rev_neigh[from];
- n->set_load(msg->get_amount());
+ n->set_load(msg->get_amount() + n->get_to_send());
+ if (opt::bookkeeping) {
+ double credit = msg->get_credit();
+ expected_load += credit;
+ n->set_credit(n->get_credit() + credit);
+ }
break;
}
- case message::CREDIT:
- expected_load += msg->get_amount();
- break;
- case message::LOAD: {
+ case message::DATA: {
+ neighbor* n = rev_neigh[from];
double ld = msg->get_amount();
- real_load += ld;
- if (finalizing)
- total_load_running -= ld;
+ received_load += ld;
+ n->set_credit(n->get_credit() - ld);
break;
}
case message::CTRL_CLOSE:
#define print_loads_generic(vec, verbose, logp, cat) \
if (_XBT_LOG_ISENABLEDV((*cat), logp)) { \
- using std::tr1::bind; \
- using std::tr1::placeholders::_1; \
+ using std::placeholders::_1; \
XBT_XCLOG(cat, logp, "My load: %g (real); %g (expected). " \
"Neighbor loads:", real_load, expected_load); \
std::for_each(vec.begin(), vec.end(), \
- bind(&neighbor::print, _1, verbose, logp, cat)); \
+ std::bind(&neighbor::print, _1, verbose, logp, cat)); \
} else ((void)0)
void process::print_loads(bool verbose,