]> AND Private Git Repository - mpi-energy.git/blob - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
1a377e2be7b43334cf058a87b49edd66c22d914e
[mpi-energy.git] / paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algorithm,algorithmicx,algpseudocode}
7 \usepackage{graphicx,graphics}
8 \usepackage{subfig}
9 \usepackage{listings}
10 \usepackage{colortbl}
11 \usepackage{amsmath}
12
13 \usepackage{url}
14 \DeclareUrlCommand\email{\urlstyle{same}}
15
16 \usepackage[autolanguage,np]{numprint}
17 \AtBeginDocument{%
18   \renewcommand*\npunitcommand[1]{\text{#1}}
19   \npthousandthpartsep{}}
20
21 \usepackage{xspace}
22 \usepackage[textsize=footnotesize]{todonotes}
23 \newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{\todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
25
26 \begin{document}
27
28 \title{Dynamic Frequency Scaling for Energy Consumption Reduction in Distributed MPI Programs}
29
30 \author{%
31   \IEEEauthorblockN{%
32     Jean-Claude Charr,
33     Raphaël Couturier,
34     Ahmed Fanfakh and
35     Arnaud Giersch
36   }
37   \IEEEauthorblockA{%
38     FEMTO-ST Institute\\
39     University of Franche-Comté\\
40     IUT de Belfort-Montbéliard, 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
41     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
42     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
43     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
44    }
45   }
46
47 \maketitle
48
49 \begin{abstract}
50   Dynamic Voltage Frequency Scaling (DVFS) can be applied to modern CPUs. 
51 This technique is usually used to reduce the energy consumed by a CPU while
52 computing. Indeed, power consumption by a processor at a given instant is
53 exponentially related to its frequency. Thus, decreasing the frequency reduces
54 the power consumed by the CPU. However, it can also significantly affect the
55 performance of the executed program if it is compute bound and if a low CPU
56 frequency is selected. The performance degradation ratio can even be higher than
57 the saved energy ratio. Therefore, the chosen scaling factor must give the best possible trade-off
58 between energy reduction and performance. 
59
60 In this paper we present an algorithm
61 that predicts the energy consumed with each frequency gear and selects the one that
62 gives the best ratio between energy consumption reduction and performance.
63 This algorithm works online without training or profiling and
64 has a very small overhead. It also takes into account synchronous communications between the nodes
65 that are executing the distributed algorithm. The algorithm has been evaluated over the SimGrid simulator
66 while being applied to the NAS parallel benchmark programs. The results of the experiments show that it outperforms other existing scaling factor selection algorithms.
67 \end{abstract}
68
69 \section{Introduction}
70 \label{sec.intro}
71
72 The need and demand for more computing power have been increasing since the birth of the first computing unit and it is not expected to slow
73 down in the coming years. To satisfy this demand, researchers and supercomputers
74 constructors have been regularly increasing the number of computing cores and processors in
75 supercomputers (for example in November 2013, according to the TOP500
76 list~\cite{43}, the Tianhe-2 was the fastest supercomputer. It has more than 3
77 millions of cores and delivers more than \np[Tflop/s]{33} while consuming
78 \np[kW]{17808}). This large increase in number of computing cores has led to large energy
79 consumption by these architectures. Moreover, the price of energy is expected to
80 continue its ascent according to the demand. For all these reasons energy
81 reduction became an important topic in the high performance computing field. To
82 tackle this problem, many researchers used DVFS (Dynamic Voltage Frequency
83 Scaling) operations which reduce dynamically the frequency and voltage of cores
84 and thus their energy consumption. Indeed, modern CPUs offer a set of acceptable frequencies which are usually called gears, and the user or the operating system can modify the frequency of the processor according to its needs. However, DVFS also degrades the
85 performance of computation. Therefore researchers try to reduce the frequency to
86 minimum when processors are idle (waiting for data from other processors or
87 communicating with other processors). Moreover, depending on their objectives
88 they use heuristics to find the best scaling factor during the computation. If
89 they aim for performance they choose the best scaling factor that reduces the
90 consumed energy while affecting as little as possible the performance. On the
91 other hand, if they aim for energy reduction, the chosen scaling factor must
92 produce the most energy efficient execution without considering the degradation
93 of the performance. It is important to notice that lowering the frequency to
94 minimum value does not always give the most energy efficient execution due to energy
95 leakage. The best scaling factor might be chosen during execution (online) or
96 during a pre-execution phase.  In this paper, we present an
97 algorithm that selects a frequency scaling factor that simultaneously takes into
98 consideration  the energy consumption by the CPU and the performance of the application. The
99 main objective of HPC systems is to execute as fast as possible the application. 
100 Therefore, our algorithm selects the scaling factor online with
101 very small footprint. The proposed algorithm takes into account the
102 communication times of the MPI program to choose the scaling factor. This
103 algorithm has ability to predict both energy consumption and execution time over
104 all available scaling factors.  The prediction achieved depends on some
105 computing time information, gathered at the beginning of the runtime.  We apply
106 this algorithm to seven MPI benchmarks. These MPI programs are the NAS parallel
107 benchmarks (NPB v3.3) developed by NASA~\cite{44}. Our experiments are executed
108 using the simulator SimGrid/SMPI v3.10~\cite{Casanova:2008:SGF:1397760.1398183}
109 over an homogeneous distributed memory architecture. Furthermore, we compare the
110 proposed algorithm with Rauber and Rünger methods~\cite{3}.
111 The comparison's results show that our algorithm gives better energy-time trade-off.
112
113 This paper is organized as follows: Section~\ref{sec.relwork} presents some related works
114 from other authors.  Section~\ref{sec.exe} explains the execution of parallel
115 tasks and the sources of slack times.  It also presents an energy
116 model for homogeneous platforms. Section~\ref{sec.mpip} describes how the performance
117 of MPI programs can be predicted.  Section~\ref{sec.compet} presents the energy-performance 
118 objective function that maximizes the reduction of energy consumption while minimizing the degradation of the program's performance. Section~\ref{sec.optim} details the proposed energy-performance algorithm. Section~\ref{sec.expe} verifies the accuracy of the performance prediction
119 model and presents the results of the proposed algorithm.  It also shows the comparison results between our method and other existing methods. Finally,
120 we conclude in Section~\ref{sec.concl} with a summary and some future works.
121 \section{Related works}
122 \label{sec.relwork}
123
124
125 In this section, some heuristics to compute the scaling factor are
126 presented and classified into two categories: offline and online methods.
127
128 \subsection{Offline scaling factor selection methods}
129
130 The offline scaling factor selection methods are executed before the runtime of
131 the program. They return static scaling factor values to the processors
132 participating in the execution of the parallel program. On one hand, the scaling
133 factor
134 values could be computed based on information retrieved by analyzing the code of
135 the program and the computing system that will execute it. In~\cite{40},
136 Azevedo et
137 al. detect during compilation the dependency points between  
138 tasks in a multi-task program. This information is then used to lower the frequency of
139 some processors in order to eliminate slack times. A slack time is the period of time during which a processor that have already finished its computation, have to wait
140 for a set of processors to finish their computations and send their results to the
141 waiting processor in order to continue its task that is
142 dependent on the results of computations being executed on other processors.
143 Freeh et al. showed in~\cite{17} that the
144 communication times of MPI programs do not change when the frequency is scaled down.
145 On the other hand, some offline scaling factor selection methods use the
146 information gathered from previous full or
147 partial executions of the program. A part or the whole program is usually executed over all the available frequency gears and the the execution time and the energy consumed  with each frequency gear are measured. Then an heuristic or an exact method uses the retrieved information to compute the values of the scaling factor for the processors.  
148    In~\cite{29}, Xie et al. use an exact exponential breadth-first search algorithm to compute the scaling factor values that give the optimal energy reduction while respecting a deadline for a sequential program. They also present a linear heuristic that approximates the optimal solution. In~\cite{8} , Rountree et al. use a linear programming
149 algorithm, while in~\cite{38,34}, Cochran et al. use multi logistic regression algorithm for the same goal. 
150 The main drawback for these methods is that they all require executing a part or the whole program on all frequency gears for each new instance of the same program. 
151
152 \subsection{Online scaling factor selection methods}
153 The online scaling factor selection methods are executed during the runtime of the program. They are usually integrated into iterative programs where the same block of instructions is executed many times.  During the first few iterations, many informations are measured such as the execution time, the energy consumed using a multimeter, the slack times, \dots{} Then a  method will exploit these measurements to compute the scaling factor values for each processor. This operation, measurements and computing new scaling factor, can be repeated as much as needed if the iterations are not regular. Kimura, Peraza, Yu-Liang et al.~\cite{11,2,31} used learning methods to select the appropriate scaling factor values  to eliminate the slack times during runtime. However, as seen in~\cite{39,19}, machine learning methods can take a lot of time to converge when the number of available gears is big. To reduce the impact of slack times,  in~\cite{1}, Lim et al. developed an algorithm that detects the
154 communication sections and changes the frequency during these sections
155 only. This approach might change the frequency of each processor many times per iteration if an iteration
156 contains more than one communication section. In~\cite{3}, Rauber and Rünger used an analytical model that can predict the consumed energy  and the execution time for every frequency gear after measuring the consumed energy  and the execution time with the highest frequency gear.   These predictions may be used to choose the optimal gear for each processor executing the parallel program to reduce energy consumption. 
157 To maintain the performance of the parallel program , they
158 set the  processor with the biggest load to the highest gear and then compute the scaling  factor values for the rest of the processors. Although this model was built for parallel architectures, it can be adapted  to distributed architectures by taking into account the communications. 
159 The primary contribution of our paper is presenting a new online scaling factor selection method which has the following characteristics:
160 \begin{enumerate}
161 \item It is based on Rauber and Rünger analytical model to predict the energy consumption  of the application with different frequency gears. 
162 \item It selects the frequency scaling factor for simultaneously optimizing energy reduction and maintaining performance.
163 \item It is well adapted to distributed architectures because it takes into account the communication time.
164 \item It is well adapted to distributed applications with imbalanced tasks.
165 \item it has very small footprint when compared to other
166   methods (e.g.,~\cite{19}) and does not require profiling or training as
167   in~\cite{38,34}.
168 \end{enumerate}
169
170
171 \section{Execution and energy of parallel tasks on homogeneous platform} 
172 \label{sec.exe}
173 %\JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'', can be deleted if we need space, we can just say we are interested in this paper in homogeneous clusters}
174 \subsection{Parallel tasks execution on homogeneous platform}
175 A homogeneous cluster consists of identical nodes in terms of hardware and software. 
176 Each node has its own memory and at least one processor which can
177 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
178 executed on this model can be either synchronous or asynchronous. In this paper
179 we consider execution of the synchronous tasks on distributed homogeneous
180 platform. These tasks can exchange the data via synchronous message passing.
181 \begin{figure*}[t]
182   \centering
183   \subfloat[Sync. imbalanced communications]{\includegraphics[scale=0.67]{fig/commtasks}\label{fig:h1}}
184   \subfloat[Sync. imbalanced computations]{\includegraphics[scale=0.67]{fig/compt}\label{fig:h2}}
185   \caption{Parallel tasks on homogeneous platform}
186   \label{fig:homo}
187 \end{figure*}
188 Therefore, the execution time of a task consists of the computation time and the
189 communication time. Moreover, the synchronous communications between tasks can
190 lead to slack times while tasks wait at the synchronization barrier for other tasks to
191 finish their tasks (see figure~(\ref{fig:h1})). The imbalanced communications 
192 happen when nodes have to send/receive different amount of data or they communicate
193 with different number of nodes. Another source of slack times is the imbalanced computations.  
194 This happens when processing different amounts of data on each processor  (see figure~(\ref{fig:h2})).  
195 In this case the fastest tasks have to wait at the synchronization barrier for the 
196 slowest ones to begin the next task. In both cases the overall execution time 
197 of the program is the execution time of the slowest task as in EQ~(\ref{eq:T1}).
198 \begin{equation}
199   \label{eq:T1}
200   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
201 \end{equation}
202 where $T_i$ is the execution time of task $i$ and all the tasks are executed concurrently on different processors.
203
204 \subsection{Energy model for homogeneous platform}
205
206 Many researchers~\cite{9,3,15,26} divide the power consumed by a processor to two power metrics: the
207  static and the dynamic power. While the first one is consumed as long as the computing unit is on, the latter is only consumed during computation times. The dynamic power
208 $P_{dyn}$  is related to the switching activity $\alpha$, load capacitance $C_L$,
209 the supply voltage $V$ and operational frequency $f$, as shown in EQ~(\ref{eq:pd}).
210 \begin{equation}
211   \label{eq:pd}
212   P_\textit{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
213 \end{equation}
214 The static power $P_{static}$ captures the leakage power as follows:
215 \begin{equation}
216   \label{eq:ps}
217    P_\textit{static}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
218 \end{equation}
219 where V is the supply voltage, $N_{trans}$ is the number of transistors, $K_{design}$ is a
220 design dependent parameter and $I_{leak}$ is a technology-dependent
221 parameter. The energy consumed by an individual processor to execute a given program can be computed as:
222 \begin{equation}
223   \label{eq:eind}
224    E_\textit{ind} =  P_\textit{dyn} \cdot T_{Comp} + P_\textit{static} \cdot T
225 \end{equation}
226 where $T$ is the execution time of the program, $T_{Comp}$ is the computation time and $T_{Comp} \leq T$. $T_{Comp}$ may be equal to $T$ if there is no communications, no slack times and no synchronizations. 
227
228 DVFS is a process that is allowed in
229 modern processors to reduce the dynamic power by scaling down the voltage and
230 frequency. Its main objective is to reduce the overall energy
231 consumption~\cite{37}. The operational frequency $f$ depends linearly on the
232 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
233 equation is used to study the change of the dynamic voltage with respect to
234 various frequency values in~\cite{3}. The reduction process of the frequency can be
235 expressed by the scaling factor $S$ which is the ratio between the
236 maximum and the new frequency as in EQ~(\ref{eq:s}).
237 \begin{equation}
238   \label{eq:s}
239  S = \frac{F_\textit{max}}{F_\textit{new}}
240 \end{equation}
241 The value of the scaling factor $S$ is greater than 1 when changing the frequency of the CPU to any
242 new frequency value~(\emph{P-state}) in the governor. The CPU governor is an
243 interface driver supplied by the operating system's kernel to
244 lower a core's frequency.  This factor reduces
245 quadratically the dynamic power which may cause degradation in performance and thus, the increase of the static energy because the execution time is increased~\cite{36}. If the tasks are sorted according to their execution times before scaling in a descending order,   the total energy consumption model for a parallel
246 homogeneous platform, as  presented by Rauber and Rünger~\cite{3}, can be written as a function of   the scaling factor $S$,   as in EQ~(\ref{eq:energy}).
247
248 \begin{equation}
249   \label{eq:energy}
250   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
251     \left( T_1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^2} \right) +
252     P_\textit{static} \cdot T_1 \cdot S_1 \cdot N
253  \hfill
254 \end{equation}
255 where $N$ is the number of parallel nodes,  $T_i$  and  $S_i$  for  $i=1,\dots,N$ are the execution times and scaling factors of the sorted tasks. Therefore,  $T1$ is the time of the slowest task,  and $S_1$ its scaling factor which should be the highest because they are proportional to
256 the time values $T_i$.  The scaling factors are computed as in EQ~(\ref{eq:si}).
257 \begin{equation}
258   \label{eq:si}
259   S_i = S \cdot \frac{T_1}{T_i}
260       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
261 \end{equation}
262 In this paper we depend on
263 Rauber and Rünger energy model EQ~(\ref{eq:energy}) for two reasons: (1) this
264 model is used for any number of concurrent tasks, and (2) we
265 compare our algorithm with Rauber and Rünger scaling factor selection method which is based on
266 EQ~(\ref{eq:energy}). The optimal scaling factor is computed by minimizing the derivation for this equation which produces EQ~(\ref{eq:sopt}).
267
268 \begin{equation}
269   \label{eq:sopt}
270   S_\textit{opt} = \sqrt[3]{\frac{2}{N} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
271     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
272 \end{equation}
273
274
275 \section{Performance evaluation of MPI programs}
276 \label{sec.mpip}
277
278 The performance (execution time) of  parallel synchronous MPI applications depend on
279 the time of the slowest task as in figure~(\ref{fig:homo}).  If there is no communication and the application is not data bounded,   the
280 execution time of a parallel program is linearly proportional to the operational
281 frequency and  any DVFS operation for  energy reduction increases the
282 execution time of the parallel program. Therefore, the scaling factor $S$ is  linearly proportional to the  execution time. However, in most of MPI applications  the processes exchange data. During these
283 communications the processors involved remain idle until the communications are
284 finished. For that reason any change in the frequency has no impact on the time
285 of communication~\cite{17}. The
286 communication time for a task is the summation of  periods of time that  begin with an MPI call for
287 sending or receiving a message till the message is synchronously sent or received. To be able to predict the execution time of MPI program, the communication time and 
288 the computation time for the slower task must be  measured before scaling. These times are used to predict the execution time for any MPI program as a function of 
289 the new scaling factor as in EQ~(\ref{eq:tnew}).
290 \begin{equation}
291   \label{eq:tnew}
292  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
293 \end{equation}
294  In this paper, this prediction method is used to select the best scaling factor for each processor as presented in the next section.
295
296 \section{Performance to energy competition}
297 \label{sec.compet}
298
299 This section demonstrates our approach for choosing the optimal scaling
300 factor. This factor gives maximum energy reduction taking into account the
301 execution times for both computation and communication. The relation
302 between the energy and the performance is nonlinear and complex, because the
303 relation of the energy with scaling factor is nonlinear and with the performance
304 it is linear see~\cite{17}.  Moreover, they are not measured using the same metric.
305 For solving this problem, we normalize the energy by calculating the ratio
306 between the consumed energy with scaled frequency and the consumed energy
307 without scaled frequency:
308 \begin{multline}
309   \label{eq:enorm}
310   E_\textit{Norm} = \frac{ E_\textit{Reduced}}{E_\textit{Original}} \\
311         {} = \frac{P_\textit{dyn} \cdot S_1^{-2} \cdot
312                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
313                P_\textit{static} \cdot T_1 \cdot S_1 \cdot N  }{
314               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
315               P_\textit{static} \cdot T_1 \cdot N }
316 \end{multline}
317 By the same way we can normalize the performance as follows:
318 \begin{equation}
319   \label{eq:pnorm}
320   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}
321           = \frac{T_\textit{Max Comp Old} \cdot S +
322            T_\textit{Max Comm Old}}{T_\textit{Max Comp Old} +
323            T_\textit{Max Comm Old}}
324 \end{equation}
325 The second problem is that the optimization operation for both energy and performance
326 is not in the same direction. In other words, the normalized energy and the
327 performance curves are not in the same direction see figure~(\ref{fig:r2}).
328 While the main goal is to optimize the energy and performance in the same
329 time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the
330 scaling factor $S$ reduce both the energy and the performance
331 simultaneously. But the main objective is to produce maximum energy reduction
332 with minimum performance reduction. Many researchers used different strategies
333 to solve this nonlinear problem for example see~\cite{19,42}, their methods add
334 big overhead to the algorithm for selecting the suitable frequency. In this
335 paper we present a method to find the optimal scaling factor $S$ for
336 optimizing both energy and performance simultaneously without adding big
337 overheads.  Our solution for this problem is to make the optimization process
338 have the same direction. Therefore, we inverse the equation of normalize
339 performance as follows:
340 \begin{equation}
341   \label{eq:pnorm_en}
342   P^{-1}_\textit{Norm} = \frac{ T_\textit{Old}}{ T_\textit{New}}
343                = \frac{T_\textit{Max Comp Old} +
344                  T_\textit{Max Comm Old}}{T_\textit{Max Comp Old} \cdot S +
345                  T_\textit{Max Comm Old}}
346 \end{equation}
347 \begin{figure*}
348   \centering
349   \subfloat[Converted relation.]{%
350     \includegraphics[width=.4\textwidth]{fig/file}\label{fig:r1}}%
351   \qquad%
352   \subfloat[Real relation.]{%
353     \includegraphics[width=.4\textwidth]{fig/file3}\label{fig:r2}}
354   \label{fig:rel}
355   \caption{The energy and performance relation}
356 \end{figure*}
357 Then, we can modelize our objective function as finding the maximum distance
358 between the energy curve EQ~(\ref{eq:enorm}) and the inverse of performance
359 curve EQ~(\ref{eq:pnorm_en}) over all available scaling factors. This represents
360 the minimum energy consumption with minimum execution time (better performance)
361 at the same time, see figure~(\ref{fig:r1}). Then our objective function has the
362 following form:
363 \begin{equation}
364   \label{eq:max}
365  Max Dist = \max_{j=1,2,\dots,F} (\overbrace{P^{-1}_\textit{Norm}(S_j)}^{\text{Maximize}} -
366                         \overbrace{E_\textit{Norm}(S_j)}^{\text{Minimize}} )
367 \end{equation}
368 where $F$ is the number of available frequencies. Then we can select the optimal scaling factor that satisfies
369 EQ~(\ref{eq:max}).  Our objective function can work with any energy model or
370 static power values stored in a data file. Moreover, this function works in
371 optimal way when the energy curve has a convex form over the available frequency scaling
372 factors as shown in~\cite{15,3,19}. 
373
374 \section{Optimal scaling factor for performance and energy}
375 \label{sec.optim}
376  Algorithm~\ref{EPSA} computes the optimal scaling factor according to the objective function described above.
377 \begin{algorithm}[tp]
378   \caption{Scaling factor selection algorithm}
379   \label{EPSA}
380   \begin{algorithmic}[1]
381     \State  Initialize the variable $Dist=0$
382     \State Set dynamic and static power values.
383     \State Set $P_{states}$ to the number of available frequencies.
384     \State Set the variable $F_{new}$ to max. frequency,  $F_{new} = F_{max} $
385     \State Set the variable $F_{diff}$ to the difference between two successive frequencies.
386     \For {$j:=1$   to   $P_{states} $}
387       \State $F_{new}=F_{new} - F_{diff} $
388       \State $S = \frac{F_\textit{max}}{F_\textit{new}}$
389       \State $S_i = S \cdot \frac{T_1}{T_i}= \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}$  for $i=1,\dots,N$
390       \State $E_\textit{Norm} = \frac{P_\textit{dyn} \cdot S_1^{-2} \cdot
391                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
392                P_\textit{static} \cdot T_1 \cdot S_1 \cdot N  }{
393               P_\textit{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
394               P_\textit{static} \cdot T_1 \cdot N }$
395       \State $P_{NormInv}=T_{old}/T_{new}$ 
396       \If{$(P_{NormInv}-E_{Norm} > Dist)$}
397         \State $S_{opt} = S$
398         \State $Dist = P_{NormInv} - E_{Norm}$
399       \EndIf
400     \EndFor
401     \State  Return $S_{opt}$
402   \end{algorithmic}
403 \end{algorithm}
404
405 The proposed algorithm works online during the execution time of the MPI
406 program. It selects the optimal scaling factor after gathering the computation and communication times 
407 from the program after one iteration. Then the program changes the new frequencies of the CPUs according to the computed scaling factors. This algorithm has a small execution time: for a homogeneous cluster composed of nodes having the characteristics presented in table~\ref{table:platform}, it takes \np[ms]{0.00152} on average for 4 nodes and \np[ms]{0.00665} on average for 32 nodes. The algorithm complexity is $O(F\cdot N)$, 
408 where $F$ is the number of available frequencies and $N$ is the number of computing nodes.  The algorithm is called just 
409 once during the execution of the program. The DVFS algorithm~(\ref{dvfs}) shows where and when the algorithm is called
410 in the MPI program.
411 \begin{table}[htb]
412   \caption{Platform file parameters}
413   % title of Table
414   \centering
415   \begin{tabular}{|*{7}{l|}}
416     \hline
417     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
418     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
419     \np{2.5} & \np{800} & \np[GBps]{2.25} &\np[$\mu$s]{0.5}& \np[GBps]{1} & \np[$\mu$s]{50} &Full  \\
420     GHz& MHz&  & & &  &Duplex  \\\hline
421   \end{tabular}
422   \label{table:platform}
423 \end{table}
424
425 %\begin{minipage}{\textwidth}
426
427 \begin{algorithm}[tp]
428   \caption{DVFS}
429   \label{dvfs}
430   \begin{algorithmic}[1]
431  \For {$k:=1$ to \textit{some iterations}}
432   \State Computations section.
433   \State Communications section.
434    \If {$(k=1)$} 
435      \State Gather all times of computation and\newline\hspace*{3em}%
436      communication from each node.
437      \State Call algorithm~\ref{EPSA} with these times.
438      \State Compute the new frequency from the\newline\hspace*{3em}%
439      returned optimal scaling factor.
440      \State Set the new frequency to the CPU.
441    \EndIf
442 \EndFor
443 \end{algorithmic}
444 \end{algorithm}
445 After obtaining the optimal scaling factor, the program
446 calculates the new frequency $F_i$ for each task proportionally to its time
447 value $T_i$. By substitution of  EQ~(\ref{eq:s}) in EQ~(\ref{eq:si}), we
448 can calculate the new frequency $F_i$ as follows:
449 \begin{equation}
450   \label{eq:fi}
451   F_i = \frac{F_\textit{max} \cdot T_i}{S_\textit{optimal} \cdot T_\textit{max}}
452 \end{equation}
453 According to this equation all the nodes may have the same frequency value if
454 they have balanced workloads, otherwise, they take different frequencies when
455 having imbalanced workloads. Thus, EQ~(\ref{eq:fi}) adapts the frequency of the CPU to the nodes' workloads to maintain performance.
456
457 \section{Experimental results}
458 \label{sec.expe}
459 Our experiments are executed on the simulator SimGrid/SMPI
460 v3.10. We configure the simulator to use a homogeneous cluster with one core per
461 node. The
462 detailed characteristics of our platform file are shown in the
463 table~(\ref{table:platform}).
464 Each node in the cluster has 18 frequency values
465 from \np[GHz]{2.5} to \np[MHz]{800} with \np[MHz]{100} difference between each two successive
466 frequencies. The simulated network link is \np[GB]{1} Ethernet (TCP/IP). 
467 The backbone of the cluster simulates a high performance switch.
468
469 \subsection{Performance prediction verification}
470
471 In this section we evaluate the precision of our performance prediction method based on EQ~(\ref{eq:tnew}) by applying it the NAS benchmarks. The NAS programs are executed with the class B option for comparing the
472 real execution time with the predicted execution time. Each program runs offline
473 with all available scaling factors on 8 or 9 nodes (depending on the benchmark) to produce real execution
474 time values. These scaling factors are computed by dividing the maximum
475 frequency by the new one see EQ~(\ref{eq:s}). 
476 \begin{figure*}[t]
477   \centering
478   \includegraphics[width=.328\textwidth]{fig/cg_per}\hfill%
479   \includegraphics[width=.328\textwidth]{fig/mg_pre}\hfill%
480  % \includegraphics[width=.4\textwidth]{fig/bt_pre}\qquad%
481   \includegraphics[width=.328\textwidth]{fig/lu_pre}\hfill%
482   \caption{Comparing predicted to real execution time}
483   \label{fig:pred}
484 \end{figure*}
485 %see Figure~\ref{fig:pred}
486 In our cluster there are 18 available frequency states for each processor. 
487 This leads to 18 run states for each program. We use seven MPI programs of the
488  NAS parallel benchmarks: CG, MG, EP, FT, BT, LU
489 and SP. Figure~(\ref{fig:pred}) presents plots of the real execution times and the simulated ones. The maximum normalized error between these two execution times varies between \np{0.0073}\AG[]{unit?} to \np{0.031} dependent on the executed benchmark. The smallest prediction error was for CG and the worst one was for LU. 
490 \subsection{The experimental results for the scaling algorithm }
491 The proposed algorithm was applied to seven MPI programs of the NAS
492 benchmarks (EP, CG, MG, FT, BT, LU and SP) which were run with three classes (A, B and
493 C). For each instance the benchmarks were executed on a number of processors
494 proportional to the size of the class.  Each class represents the problem size
495 ascending from the class A to C. Additionally, depending on some speed up points
496 for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
497 respectively. 
498 Depending on EQ~(\ref{eq:energy}), we measure the energy consumption for all
499 the NAS MPI programs while assuming the power dynamic with the highest frequency is equal to \np[W]{20} and
500 the power static is equal to \np[W]{4} for all experiments. These power values were also
501 used by Rauber and Rünger in~\cite{3}.  The results showed that the algorithm selected
502 different scaling factors for each program depending on the communication
503 features of the program as in the plots~(\ref{fig:nas}). These plots illustrate that
504 there are different distances between the normalized energy and the normalized
505 inverted performance curves, because there are different communication features
506 for each benchmark.  When there are little or not communications, the inverted
507 performance curve is very close to the energy curve. Then the distance between
508 the two curves is very small. This leads to small energy savings. The opposite
509 happens when there are a lot of communication, the distance between the two
510 curves is big.  This leads to more energy savings (e.g. CG and FT), see
511 table~(\ref{table:factors results}). All discovered frequency scaling factors
512 optimize both the energy and the performance simultaneously for all  NAS
513 benchmarks. In table~(\ref{table:factors results}), we record all optimal scaling
514 factors results for each benchmark running class C. These scaling factors give the maximum
515 energy saving percent and the minimum performance degradation percent at the
516 same time from all available scaling factors.
517 \begin{figure*}[t]
518   \centering
519   \includegraphics[width=.328\textwidth]{fig/ep}\hfill%
520   \includegraphics[width=.328\textwidth]{fig/cg}\hfill%
521   \includegraphics[width=.328\textwidth]{fig/sp}
522   \includegraphics[width=.328\textwidth]{fig/lu}\hfill%
523   \includegraphics[width=.328\textwidth]{fig/bt}\hfill%
524   \includegraphics[width=.328\textwidth]{fig/ft}
525   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
526   \label{fig:nas}
527 \end{figure*}
528 \begin{table}[htb]
529   \caption{The scaling factors results}
530   % title of Table
531   \centering
532   \begin{tabular}{|l|*{4}{r|}}
533     \hline
534     Program & Optimal & Energy  & Performance&Energy-Perf.\\
535     Name & Scaling Factor& Saving \%&Degradation \% &Distance  \\ \hline
536     CG & 1.56 &39.23&14.88 &24.35\\ \hline
537     MG & 1.47 &34.97&21.70 &13.27 \\ \hline
538     EP & 1.04 &22.14&20.73 &1.41\\ \hline
539     LU & 1.38 &35.83&22.49 &13.34\\ \hline
540     BT & 1.31 &29.60&21.28 &8.32\\ \hline
541     SP & 1.38 &33.48&21.36 &12.12\\ \hline
542     FT & 1.47 &34.72&19.00 &15.72\\ \hline
543   \end{tabular} 
544   \label{table:factors results}
545   % is used to refer this table in the text
546 \end{table}
547 As shown in the table~(\ref{table:factors results}), when the optimal scaling
548 factor has big value we can gain more energy savings for example as in CG and
549 FT. The opposite happens when the optimal scaling factor is small value as
550 example BT and EP. Our algorithm selects big scaling factor value when the
551 communication and the other slacks times are big and smaller ones in opposite
552 cases. In EP there are no communications inside the iterations. This make our
553 algorithm to selects smaller scaling factor values (inducing smaller energy savings).
554
555 \subsection{Results comparison}
556
557 In this section, we compare our scaling factor selection method with Rauber and Rünger
558 methods~\cite{3}. They had two scenarios, the first is to reduce energy to the
559 optimal level without considering the performance as in EQ~(\ref{eq:sopt}). We
560 refer to this scenario as $R_{E}$. The second scenario is similar to the first
561 except setting the slower task to the maximum frequency (when the scale $S=1$)
562 to keep the performance from degradation as mush as possible. We refer to this
563 scenario as $R_{E-P}$. While we refer to our algorithm as EPSA (Energy to Performance Scaling Algorithm). The comparison
564 is made in tables \ref{table:compareA}, \ref{table:compareB},
565 and~\ref{table:compareC}. These
566 tables show the results of our method and Rauber and Rünger scenarios for all the
567 NAS benchmarks programs for classes A, B and C.
568 \begin{table}[p]
569   \caption{Comparing results for  the NAS class A}
570   % title of Table
571   \centering
572   \begin{tabular}{|l|l|*{4}{r|}}
573     \hline
574     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
575     Name &Name&Value& Saving \%&Degradation \% &Distance
576     \\ \hline
577     % \rowcolor[gray]{0.85}
578     $EPSA$&CG & 1.56 &37.02 & 13.88 & 23.14\\ \hline
579     $R_{E-P}$&CG &2.14 &42.77 & 25.27 & 17.50\\ \hline
580     $R_{E}$&CG &2.14 &42.77&26.46&16.31\\ \hline
581
582     $EPSA$&MG & 1.47 &27.66&16.82&10.84\\ \hline
583     $R_{E-P}$&MG &2.14&34.45&31.84&2.61\\ \hline
584     $R_{E}$&MG &2.14&34.48&33.65&0.80 \\ \hline
585
586     $EPSA$&EP &1.19 &25.32&20.79&4.53\\ \hline
587     $R_{E-P}$&EP&2.05&41.45&55.67&-14.22\\ \hline
588     $R_{E}$&EP&2.05&42.09&57.59&-15.50\\ \hline
589
590     $EPSA$&LU&1.56& 39.55 &19.38& 20.17\\ \hline
591     $R_{E-P}$&LU&2.14&45.62&27.00&18.62 \\ \hline
592     $R_{E}$&LU&2.14&45.66&33.01&12.65\\ \hline
593
594     $EPSA$&BT&1.31& 29.60&20.53&9.07 \\ \hline
595     $R_{E-P}$&BT&2.10&45.53&49.63&-4.10\\ \hline
596     $R_{E}$&BT&2.10&43.93&52.86&-8.93\\ \hline
597
598     $EPSA$&SP&1.38& 33.51&15.65&17.86 \\ \hline
599     $R_{E-P}$&SP&2.11&45.62&42.52&3.10\\ \hline
600     $R_{E}$&SP&2.11&45.78&43.09&2.69\\ \hline
601
602     $EPSA$&FT&1.25&25.00&10.80&14.20 \\ \hline
603     $R_{E-P}$&FT&2.10&39.29&34.30&4.99 \\ \hline
604     $R_{E}$&FT&2.10&37.56&38.21&-0.65\\ \hline
605   \end{tabular}
606   \label{table:compareA}
607   % is used to refer this table in the text
608 \end{table}
609 \begin{table}[p]
610   \caption{Comparing results for the NAS class B}
611   % title of Table
612   \centering
613   \begin{tabular}{|l|l|*{4}{r|}}
614     \hline
615     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
616     Name &Name&Value& Saving \%&Degradation \% &Distance
617     \\ \hline
618     % \rowcolor[gray]{0.85}
619     $EPSA$&CG & 1.66 &39.23&16.63&22.60   \\ \hline
620     $R_{E-P}$&CG &2.15 &45.34&27.60&17.74\\ \hline
621     $R_{E}$&CG &2.15 &45.34&28.88&16.46\\ \hline
622
623     $EPSA$ &MG & 1.47 &34.98&18.35&16.63\\ \hline
624     $R_{E-P}$&MG &2.14&43.55&36.42&7.13 \\ \hline
625     $R_{E}$&MG &2.14&43.56&37.07&6.49 \\ \hline
626
627     $EPSA$&EP &1.08 &20.29&17.15&3.14 \\ \hline
628     $R_{E-P}$&EP&2.00&42.38&56.88&-14.50\\ \hline
629     $R_{E}$&EP&2.00&39.73&59.94&-20.21\\ \hline
630
631     $EPSA$&LU&1.47&38.57&21.34&17.23 \\ \hline
632     $R_{E-P}$&LU&2.10&43.62&36.51&7.11 \\ \hline
633     $R_{E}$&LU&2.10&43.61&38.54&5.07 \\ \hline
634
635     $EPSA$&BT&1.31& 29.59&20.88&8.71\\ \hline
636     $R_{E-P}$&BT&2.10&44.53&53.05&-8.52\\ \hline
637     $R_{E}$&BT&2.10&42.93&52.80&-9.87\\ \hline
638
639     $EPSA$&SP&1.38&33.44&19.24&14.20 \\ \hline
640     $R_{E-P}$&SP&2.15&45.69&43.20&2.49\\ \hline
641     $R_{E}$&SP&2.15&45.41&44.47&0.94\\ \hline
642
643     $EPSA$&FT&1.38&34.40&14.57&19.83 \\ \hline
644     $R_{E-P}$&FT&2.13&42.98&37.35&5.63 \\ \hline
645     $R_{E}$&FT&2.13&43.04&37.90&5.14\\ \hline
646   \end{tabular}
647   \label{table:compareB}
648   % is used to refer this table in the text
649 \end{table}
650
651 \begin{table}[p]
652   \caption{Comparing results for the NAS class C}
653   % title of Table
654   \centering
655   \begin{tabular}{|l|l|*{4}{r|}}
656     \hline
657     Method&Program&Factor& Energy& Performance &Energy-Perf.\\
658     Name &Name&Value& Saving \%&Degradation \% &Distance
659     \\ \hline
660     % \rowcolor[gray]{0.85}
661     $EPSA$&CG & 1.56 &39.23&14.88&24.35  \\ \hline
662     $R_{E-P}$&CG &2.15 &45.36&25.89&19.47\\ \hline
663     $R_{E}$&CG &2.15 &45.36&26.70&18.66\\ \hline
664
665     $EPSA$&MG & 1.47 &34.97&21.69&13.27\\ \hline
666     $R_{E-P}$&MG &2.15&43.65&40.45&3.20 \\ \hline
667     $R_{E}$&MG &2.15&43.64&41.38&2.26 \\ \hline
668
669     $EPSA$&EP &1.04 &22.14&20.73&1.41 \\ \hline
670     $R_{E-P}$&EP&1.92&39.40&56.33&-16.93\\ \hline
671     $R_{E}$&EP&1.92&38.10&56.35&-18.25\\ \hline
672
673     $EPSA$&LU&1.38&35.83&22.49&13.34 \\ \hline
674     $R_{E-P}$&LU&2.15&44.97&41.00&3.97 \\ \hline
675     $R_{E}$&LU&2.15&44.97&41.80&3.17 \\ \hline
676
677     $EPSA$&BT&1.31& 29.60&21.28&8.32\\ \hline
678     $R_{E-P}$&BT&2.13&45.60&49.84&-4.24\\ \hline
679     $R_{E}$&BT&2.13&44.90&55.16&-10.26\\ \hline
680
681     $EPSA$&SP&1.38&33.48&21.35&12.12\\ \hline
682     $R_{E-P}$&SP&2.10&45.69&43.60&2.09\\ \hline
683     $R_{E}$&SP&2.10&45.75&44.10&1.65\\ \hline
684
685     $EPSA$&FT&1.47&34.72&19.00&15.72 \\ \hline
686     $R_{E-P}$&FT&2.04&39.40&37.10&2.30\\ \hline
687     $R_{E}$&FT&2.04&39.35&37.70&1.65\\ \hline
688   \end{tabular}
689 \label{table:compareC}
690 % is used to refer this table in the text
691 \end{table}
692 As shown in tables~\ref{table:compareA},~\ref{table:compareB} and~\ref{table:compareC}, the ($R_{E-P}$) method outperforms the ($R_{E}$) method in terms of performance and energy reduction. The ($R_{E-P}$) method also gives better energy savings than our method. However, although our scaling factor is not optimal for energy reduction, the results in these tables prove that our algorithm returns the best scaling factor that satisfy our objective method: the largest distance between energy reduction and performance degradation. Negative values in the energy-performance column mean that one of the two objectives (energy or performance) have been degraded more than the other. The positive trade-offs with the highest values lead to maximum energy savings
693 while keeping the performance degradation as low as possible. Our algorithm always
694 gives the highest positive energy to performance trade-offs while Rauber and Rünger method
695 ($R_{E-P}$) gives in some time negative trade-offs such as in BT and
696 EP.
697 %\begin{figure*}[t]
698 %  \centering
699 %  \includegraphics[width=.328\textwidth]{fig/compare_class_A}
700 %  \includegraphics[width=.328\textwidth]{fig/compare_class_B}
701 %  \includegraphics[width=.328\textwidth]{fig/compare_class_C}
702 %  \caption{Comparing our method to Rauber and Rünger methods}
703 %  \label{fig:compare}
704 %\end{figure*}
705 \section{Conclusion}
706 \label{sec.concl}
707 In this paper, we have presented a new online scaling factor selection method that optimizes simultaneously the energy and performance of a distributed application running on an homogeneous cluster. It uses the computation and communication times measured at the first iteration to predict energy consumption and the performance of the parallel application at every available frequency. Then, it selects the scaling factor that gives the best trade-off between energy reduction and performance which is the maximum distance between the energy and the inverted performance curves. To evaluate this method, we have applied it to the NAS benchmarks and it was compared to Rauber and Rünger methods while being executed on the simulator SimGrid. The results showed that our method, outperforms Rauber and Rünger methods in terms of energy-performance ratio. 
708
709 In the near future, we would like to adapt this scaling factor selection method to heterogeneous platforms where each node has different characteristics. In particular, each CPU has different available frequencies, energy consumption and performance. It would be also interesting to develop a new energy model for asynchronous parallel iterative methods where the number of iterations is not known in advance and depends on the global convergence of the iterative system.
710
711
712 \section*{Acknowledgment}
713 This work has been supported by the Labex ACTION project (contract ``ANR-11-LABX-01-01''). Computations have been performed on the supercomputer facilities of the
714 Mésocentre de calcul de Franche-Comté. As a PhD student, Mr. Ahmed Fanfakh, would like to thank the University of
715 Babylon (Iraq) for supporting his work.
716
717 % trigger a \newpage just before the given reference
718 % number - used to balance the columns on the last page
719 % adjust value as needed - may need to be readjusted if
720 % the document is modified later
721 %\IEEEtriggeratref{15}
722
723 \bibliographystyle{IEEEtran}
724 \bibliography{IEEEabrv,my_reference}
725 \end{document}
726
727 %%% Local Variables:
728 %%% mode: latex
729 %%% TeX-master: t
730 %%% fill-column: 80
731 %%% ispell-local-dictionary: "american"
732 %%% End:
733
734 %  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
735 %  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex