
Dynamic Frequency Scaling for Energy Consumption
Reduction in Distributed MPI Programs

Jean-Claude Charr, Raphaël Couturier, Ahmed Fanfakh and Arnaud Giersch
FEMTO-ST Institute

University of Franche-Comté
IUT de Belfort-Montbéliard, 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France

Email: {jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr

Abstract—Dynamic Voltage Frequency Scaling (DVFS) can
be applied to modern CPUs. This technique is usually used to
reduce the energy consumed by a CPU while computing. Indeed,
power consumption by a processor at a given time is exponentially
related to its frequency. Thus, decreasing the frequency reduces
the power consumed by the CPU. However, it can also significantly
affect the performance of the executed program if it is compute
bound and if a low CPU frequency is selected. The performance
degradation ratio can even be higher than the saved energy ratio.
Therefore, the chosen scaling factor must give the best possible
trade-off between energy reduction and performance.

In this paper we present an algorithm that predicts the
energy consumed with each frequency gear and selects the one
that gives the best ratio between energy consumption reduction
and performance. This algorithm works online without training
or profiling and has a very small overhead. It also takes into
account synchronous communications between the nodes that
are executing the distributed algorithm. The algorithm has
been evaluated over the SimGrid simulator while being applied
to the NAS parallel benchmark programs. The results of the
experiments show that it outperforms other existing scaling factor
selection algorithms.

I. INTRODUCTION

The need and demand for more computing power have
been increasing since the birth of the first computing unit and
it is not expected to slow down in the coming years. To satisfy
this demand, researchers and supercomputers constructors have
been regularly increasing the number of computing cores and
processors in supercomputers (for example in November 2013,
according to the TOP500 list [1], the Tianhe-2 was the fastest
supercomputer. It has more than 3 million of cores and delivers
more than 33 Tflop/s while consuming 17,808 kW). This large
increase in number of computing cores has led to large energy
consumption by these architectures. Moreover, the price of
energy is expected to continue its ascent according to the
demand. For all these reasons energy reduction has become
an important topic in the high performance computing field.
To tackle this problem, many researchers use DVFS (Dynamic
Voltage Frequency Scaling) operations which reduce dynami-
cally the frequency and voltage of cores and thus their energy
consumption. Indeed, modern CPUs offer a set of acceptable
frequencies which are usually called gears, and the user or
the operating system can modify the frequency of the pro-
cessor according to its needs. However, DVFS also degrades
the performance of computation. Therefore researchers try to
reduce the frequency to the minimum when processors are idle
(waiting for data from other processors or communicating with

other processors). Moreover, depending on their objectives,
they use heuristics to find the best scaling factor during the
computation. If they aim for performance they choose the best
scaling factor that reduces the consumed energy while affecting
as little as possible the performance. On the other hand,
if they aim for energy reduction, the chosen scaling factor
must produce the most energy efficient execution without
considering the degradation of the performance. It is important
to notice that lowering the frequency to the minimum value
does not always give the most energy efficient execution due
to energy leakage. The best scaling factor might be chosen
during execution (online) or during a pre-execution phase. In
this paper, we present an algorithm that selects a frequency
scaling factor that simultaneously takes into consideration the
energy consumption by the CPU and the performance of
the application. The main objective of HPC systems is to
execute as fast as possible the application. Therefore, our
algorithm selects the scaling factor online with very small
footprint. The proposed algorithm takes into account the com-
munication times of the MPI program to choose the scaling
factor. This algorithm has the ability to predict both energy
consumption and execution time over all available scaling
factors. The prediction achieved depends on some computing
time information, gathered at the beginning of the runtime.
We apply this algorithm to seven MPI benchmarks. These
MPI programs are the NAS parallel benchmarks (NPB v3.3)
developed by NASA [2]. Our experiments are executed using
the simulator SimGrid/SMPI v3.10 [3] over an homogeneous
distributed memory architecture. Furthermore, we compare the
proposed algorithm with Rauber and Rünger methods [4].
The comparison’s results show that our algorithm gives better
energy-time trade-off.

This paper is organized as follows: Section II presents
some related works from other authors. Section III explains
the execution of parallel tasks and the sources of slack times.
It also presents an energy model for homogeneous platforms.
Section IV describes how the performance of MPI programs
can be predicted. Section V presents the energy-performance
objective function that maximizes the reduction of energy
consumption while minimizing the degradation of the pro-
gram’s performance. Section VI details the proposed energy-
performance algorithm. Section VII verifies the accuracy of
the performance prediction model and presents the results of
the proposed algorithm. It also shows the comparison results
between our method and other existing methods. Finally, we
conclude in Section VIII with a summary and some future
works.



II. RELATED WORKS

In this section, some heuristics to compute the scaling
factor are presented and classified into two categories: offline
and online methods.

A. Offline scaling factor selection methods

The offline scaling factor selection methods are executed
before the runtime of the program. They return static scaling
factor values to the processors participating in the execution
of the parallel program. On the one hand, the scaling factor
values could be computed based on information retrieved
by analyzing the code of the program and the computing
system that will execute it. In [5], Azevedo et al. detect
during compilation the dependency points between tasks in
a multi-task program. This information is then used to lower
the frequency of some processors in order to eliminate slack
times. A slack time is the period of time during which a
processor that has already finished its computation, has to wait
for a set of processors to finish their computations and send
their results to the waiting processor in order to continue its
task that is dependent on the results of computations being
executed on other processors. Freeh et al. showed in [6] that the
communication times of MPI programs do not change when
the frequency is scaled down. On the other hand, some offline
scaling factor selection methods use the information gathered
from previous full or partial executions of the program. The
whole program or, a part of it, is usually executed over all
the available frequency gears and the execution time and the
energy consumed with each frequency gear are measured. Then
a heuristic or an exact method uses the retrieved information
to compute the values of the scaling factor for the processors.
In [7], Xie et al. use an exact exponential breadth-first search
algorithm to compute the scaling factor values that give the
optimal energy reduction while respecting a deadline for a
sequential program. They also present a linear heuristic that
approximates the optimal solution. In [8] , Rountree et al. use
a linear programming algorithm, while in [9], [10], Cochran et
al. use a multi-logistic regression algorithm for the same goal.
The main drawback of these methods is that they all require
executing the whole program or, a part of it, on all frequency
gears for each new instance of the same program.

B. Online scaling factor selection methods

The online scaling factor selection methods are executed
during the runtime of the program. They are usually integrated
into iterative programs where the same block of instructions is
executed many times. During the first few iterations, a lot of
information is measured such as the execution time, the energy
consumed using a multimeter, the slack times, . . . Then a
method will exploit these measurements to compute the scaling
factor values for each processor. This operation, measurements
and computing new scaling factor, can be repeated as much as
needed if the iterations are not regular. Kimura, Peraza, Yu-
Liang et al. [11], [12], [13] used varied heuristics to select
the appropriate scaling factor values to eliminate the slack
times during runtime. However, as seen in [14], [15], machine
learning methods can take a lot of time to converge when the
number of available gears is big. To reduce the impact of slack
times, in [16], Lim et al. developed an algorithm that detects
the communication sections and changes the frequency during

these sections only. This approach might change the frequency
of each processor many times per iteration if an iteration
contains more than one communication section. In [4], Rauber
and Rünger used an analytical model that can predict the
consumed energy and the execution time for every frequency
gear after measuring the consumed energy and the execution
time with the highest frequency gear. These predictions may
be used to choose the optimal gear for each processor exe-
cuting the parallel program to reduce energy consumption. To
maintain the performance of the parallel program , they set the
processor with the biggest load to the highest gear and then
compute the scaling factor values for the rest of the processors.
Although this model was built for parallel architectures, it can
be adapted to distributed architectures by taking into account
the communications. The primary contribution of our paper is
to present a new online scaling factor selection method which
has the following characteristics:

1) It is based on Rauber and Rünger analytical model
to predict the energy consumption of the application
with different frequency gears.

2) It selects the frequency scaling factor for simultane-
ously optimizing energy reduction and maintaining
performance.

3) It is well adapted to distributed architectures because
it takes into account the communication time.

4) It is well adapted to distributed applications with
imbalanced tasks.

5) It has a very small footprint when compared to other
methods (e.g., [15]) and does not require profiling or
training as in [9], [10].

III. EXECUTION AND ENERGY OF PARALLEL TASKS ON
HOMOGENEOUS PLATFORM

A. Parallel tasks execution on homogeneous platform

A homogeneous cluster consists in identical nodes in terms
of hardware and software. Each node has its own memory and
at least one processor which can be a multi-core. The nodes
are connected via a high bandwidth network. Tasks executed
on this model can be either synchronous or asynchronous. In
this paper we consider execution of the synchronous tasks on
distributed homogeneous platform. These tasks can exchange
the data via synchronous message passing. Therefore, the
execution time of a task consists in the computation time and
the communication time. Moreover, the synchronous commu-
nications between tasks can lead to slack times while tasks
wait at the synchronization barrier for other tasks to finish
their tasks (see figure (1a)). The imbalanced communications
happen when nodes have to send/receive different amounts of
data or they communicate with different numbers of nodes.
Other sources of slack times are imbalanced computations.
This happens when processing different amounts of data on
each processor (see figure (1b)). In this case the fastest tasks
have to wait at the synchronization barrier for the slowest ones
to begin the next task. In both cases the overall execution time
of the program is the execution time of the slowest task as in
EQ (1).

Program Time = max
i=1,2,...,N

Ti (1)

where Ti is the execution time of task i and all the tasks are
executed concurrently on different processors.
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Figure 1: Parallel tasks on homogeneous platform

B. Energy model for homogeneous platform

Many researchers [17], [4], [18], [19] divide the power
consumed by a processor into two power metrics: the static
and the dynamic power. While the first one is consumed as
long as the computing unit is on, the latter is only consumed
during computation times. The dynamic power Pdyn is related
to the switching activity α, load capacitance CL, the supply
voltage V and operational frequency f , as shown in EQ (2).

Pdyn = α · CL · V 2 · f (2)

The static power Pstatic captures the leakage power as follows:

Pstatic = V ·Ntrans ·Kdesign · Ileak (3)

where V is the supply voltage, Ntrans is the number of
transistors, Kdesign is a design dependent parameter and Ileak
is a technology-dependent parameter. The energy consumed
by an individual processor to execute a given program can be
computed as:

Eind = Pdyn · TComp + Pstatic · T (4)

where T is the execution time of the program, TComp is the
computation time and TComp ≤ T . TComp may be equal
to T if there is no communication, no slack time and no
synchronization.

DVFS is a process that is allowed in modern processors
to reduce the dynamic power by scaling down the voltage
and frequency. Its main objective is to reduce the overall
energy consumption [20]. The operational frequency f de-
pends linearly on the supply voltage V , i.e., V = β · f with
some constant β. This equation is used to study the change
of the dynamic voltage with respect to various frequency
values in [4]. The reduction process of the frequency can be
expressed by the scaling factor S which is the ratio between
the maximum and the new frequency as in EQ (5).

S =
Fmax

Fnew
(5)

The value of the scaling factor S is greater than 1 when
changing the frequency of the CPU to any new frequency
value (P-state) in the governor. The CPU governor is an
interface driver supplied by the operating system’s kernel to
lower a core’s frequency. This factor reduces quadratically the
dynamic power which may cause degradation in performance
and thus, the increase of the static energy because the execution
time is increased [21]. If the tasks are sorted according to
their execution times before scaling in a descending order, the
total energy consumption model for a parallel homogeneous
platform, as presented by Rauber and Rünger [4], can be
written as a function of the scaling factor S, as in EQ (6).

E = Pdyn · S−2
1 ·

(
T1 +

N∑
i=2

T 3
i

T 2
1

)
+ Pstatic · T1 · S1 ·N (6)

where N is the number of parallel nodes, Ti and Si for i =
1, . . . , N are the execution times and scaling factors of the
sorted tasks. Therefore, T1 is the time of the slowest task, and
S1 its scaling factor which should be the highest because they
are proportional to the time values Ti. The scaling factors are
computed as in EQ (7).

Si = S · T1
Ti

=
Fmax

Fnew
· T1
Ti

(7)

In this paper we use Rauber and Rünger’s energy model,
EQ (6), because it can be applied to homogeneous clusters if
the communication time is taken in consideration. Moreover,
we compare our algorithm with Rauber and Rünger’s scaling
factor selection method which uses the same energy model.
In their method, the optimal scaling factor is computed by
minimizing the derivation of EQ (6) which produces EQ (8).

Sopt =
3

√√√√ 2

N
·
Pdyn

Pstatic
·

(
1 +

N∑
i=2

T 3
i

T 3
1

)
(8)



IV. PERFORMANCE EVALUATION OF MPI PROGRAMS

The performance (execution time) of parallel synchronous
MPI applications depends on the time of the slowest task as
in figure (1). If there is no communication and the application
is not data bounded, the execution time of a parallel program
is linearly proportional to the operational frequency and any
DVFS operation for energy reduction increases the execution
time of the parallel program. Therefore, the scaling factor S is
linearly proportional to the execution time. However, in most
MPI applications the processes exchange data. During these
communications the processors involved remain idle until the
communications are finished. For that reason, any change in
the frequency has no impact on the time of communication [6].
The communication time for a task is the summation of periods
of time that begin with an MPI call for sending or receiving
a message till the message is synchronously sent or received.
To be able to predict the execution time of MPI program, the
communication time and the computation time for the slowest
task must be measured before scaling. These times are used to
predict the execution time for any MPI program as a function
of the new scaling factor as in EQ (9).

Tnew = TMax Comp Old · S + TMax Comm Old (9)

In this paper, this prediction method is used to select the
best scaling factor for each processor as presented in the next
section.

V. PERFORMANCE AND ENERGY REDUCTION TRADE-OFF

This section presents our approach for choosing the optimal
scaling factor. This factor gives maximum energy reduction
while taking into account the execution times for both com-
putation and communication. The relation between the perfor-
mance and the energy is nonlinear and complex. Thus, unlike
the relation between the performance and the scaling factor,
the relation of energy with the scaling factor is nonlinear, for
more details refer to [6]. Moreover, they are not measured
using the same metric. To solve this problem, we normalize the
energy by calculating the ratio between the consumed energy
with scaled frequency and the consumed energy without scaled
frequency:

ENorm =
EReduced

EOriginal

=
Pdyn · S−2

1 ·
(
T1 +

∑N
i=2

T 3
i

T 2
1

)
+ Pstatic · T1 · S1 ·N

Pdyn ·
(
T1 +

∑N
i=2

T 3
i

T 2
1

)
+ Pstatic · T1 ·N

(10)

In the same way we can normalize the performance as follows:

PNorm =
TNew

TOld
=
TMax Comp Old · S + TMax Comm Old

TMax Comp Old + TMax Comm Old
(11)

The second problem is that the optimization operation for both
energy and performance is not in the same direction. In other
words, the normalized energy and the performance curves are
not at the same direction see figure (2b). While the main goal
is to optimize the energy and performance in the same time.
According to the equations (10) and (11), the scaling factor S
reduce both the energy and the performance simultaneously.
But the main objective is to produce maximum energy reduc-
tion with minimum performance reduction. Many researchers

Algorithm 1 Scaling factor selection algorithm

1: Initialize the variable Dist = 0
2: Set dynamic and static power values.
3: Set Pstates to the number of available frequencies.
4: Set the variable Fnew to max. frequency, Fnew = Fmax
5: Set the variable Fdiff to the difference between two

successive frequencies.
6: for j := 1 to Pstates do
7: Fnew = Fnew − Fdiff
8: S = Fmax

Fnew

9: Si = S · T1

Ti
= Fmax

Fnew
· T1

Ti
for i = 1, . . . , N

10: ENorm =
Pdyn·S−2

1 ·
(
T1+

∑N
i=2

T3
i

T2
1

)
+Pstatic·T1·S1·N

Pdyn·
(
T1+

∑N
i=2

T3
i

T2
1

)
+Pstatic·T1·N

11: PNormInv = Told/Tnew
12: if (PNormInv − ENorm > Dist) then
13: Sopt = S
14: Dist = PNormInv − ENorm
15: end if
16: end for
17: Return Sopt

used different strategies to solve this nonlinear problem for
example see [15], [22], their methods add big overheads to
the algorithm to select the suitable frequency. In this paper
we present a method to find the optimal scaling factor S to
optimize both energy and performance simultaneously without
adding a big overhead. Our solution for this problem is to make
the optimization process for energy and performance follow
the same direction. Therefore, we inverse the equation of the
normalized performance as follows:

P−1
Norm =

TOld

TNew
=

TMax Comp Old + TMax Comm Old

TMax Comp Old · S + TMax Comm Old
(12)

Then, we can modelize our objective function as finding the
maximum distance between the energy curve EQ (10) and the
inverse of performance curve EQ (12) over all available scaling
factors. This represents the minimum energy consumption with
minimum execution time (better performance) at the same
time, see figure (2a). Then our objective function has the
following form:

MaxDist = max
j=1,2,...,F

(

Maximize︷ ︸︸ ︷
P−1

Norm(Sj)−
Minimize︷ ︸︸ ︷

ENorm(Sj)) (13)

where F is the number of available frequencies. Then we can
select the optimal scaling factor that satisfies EQ (13). Our
objective function can work with any energy model or static
power values stored in a data file. Moreover, this function
works in optimal way when the energy curve has a convex
form over the available frequency scaling factors as shown
in [18], [4], [15].

VI. OPTIMAL SCALING FACTOR FOR PERFORMANCE AND
ENERGY

Algorithm 1 computes the optimal scaling factor according
to the objective function described above.

The proposed algorithm works online during the execution
time of the MPI program. It selects the optimal scaling factor
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Figure 2: The energy and performance relation

Algorithm 2 DVFS

1: for k := 1 to some iterations do
2: Computations section.
3: Communications section.
4: if (k = 1) then
5: Gather all times of computation and

communication from each node.
6: Call algorithm 1 with these times.
7: Compute the new frequency from the

returned optimal scaling factor.
8: Set the new frequency to the CPU.
9: end if

10: end for

after gathering the computation and communication times from
the program after one iteration. Then the program changes
the new frequencies of the CPUs according to the computed
scaling factors. This algorithm has a small execution time:
for a homogeneous cluster composed of nodes having the
characteristics presented in table I, it takes 0.00152 ms on
average for 4 nodes and 0.00665 ms on average for 32 nodes.
The algorithm complexity is O(F ·N), where F is the number
of available frequencies and N is the number of computing
nodes. The algorithm is called just once during the execution
of the program. The DVFS algorithm (2) shows where and
when the algorithm is called in the MPI program.

Table I: Platform file parameters

Max Min Backbone Backbone Link Link Sharing
Freq. Freq. Bandwidth Latency Bandwidth Latency Policy
2.5 800 2.25 GBps 0.5µs 1 GBps 50µs Full
GHz MHz Duplex

After obtaining the optimal scaling factor, the program
calculates the new frequency Fi for each task proportionally
to its time value Ti. By substitution of EQ (5) in EQ (7), we
can calculate the new frequency Fi as follows:

Fi =
Fmax · Ti

Soptimal · Tmax
(14)

According to this equation all the nodes may have the same

frequency value if they have balanced workloads, otherwise,
they take different frequencies when having imbalanced work-
loads. Thus, EQ (14) adapts the frequency of the CPU to the
nodes’ workloads to maintain the performance of the program.

VII. EXPERIMENTAL RESULTS

Our experiments are executed on the simulator Sim-
Grid/SMPI v3.10. We configure the simulator to use a homoge-
neous cluster with one core per node. The detailed characteris-
tics of our platform file are shown in table (I). Each node in the
cluster has 18 frequency values from 2.5 GHz to 800 MHz with
100 MHz difference between each two successive frequencies.
The simulated network link is 1 GB Ethernet (TCP/IP). The
backbone of the cluster simulates a high performance switch.

A. Performance prediction verification

In this section we evaluate the precision of our performance
prediction method based on EQ (9) by applying it to the NAS
benchmarks. The NAS programs are executed with the class B
option to compare the real execution time with the predicted
execution time. Each program runs offline with all available
scaling factors on 8 or 9 nodes (depending on the benchmark)
to produce real execution time values. These scaling factors
are computed by dividing the maximum frequency by the
new one see EQ (5). In our cluster there are 18 available
frequency states for each processor. This leads to 18 run
states for each program. We use seven MPI programs of the
NAS parallel benchmarks: CG, MG, EP, FT, BT, LU and SP.
Figure (3) presents plots of the real execution times and the
simulated ones. The maximum normalized error between these
two execution times varies between 0.0073 to 0.031 dependent
on the executed benchmark. The smallest prediction error was
for CG and the worst one was for LU.

B. The experimental results for the scaling algorithm

The proposed algorithm was applied to seven MPI pro-
grams of the NAS benchmarks (EP, CG, MG, FT, BT, LU and
SP) which were run with three classes (A, B and C). For each
instance the benchmarks were executed on a number of proces-
sors proportional to the size of the class. Each class represents
the problem size ascending from class A to C. Additionally,
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Figure 3: Comparing predicted to real execution time
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Figure 4: Optimal scaling factors for the predicted energy and performance of NAS benchmarks

depending on some speed up points for each class we run the
classes A, B and C on 4, 8 or 9 and 16 nodes respectively.
Depending on EQ (6), we measure the energy consumption for
all the NAS MPI programs while assuming that the dynamic
power with the highest frequency is equal to 20 W and the
power static is equal to 4 W for all experiments. These power
values were also used by Rauber and Rünger in [4]. The results
showed that the algorithm selected different scaling factors for
each program depending on the communication features of the
program as in the plots (4). These plots illustrate that there
are different distances between the normalized energy and
the normalized inverted performance curves, because there are
different communication features for each benchmark. When
there are little or no communications, the inverted performance
curve is very close to the energy curve. Then the distance
between the two curves is very small. This leads to small
energy savings. The opposite happens when there are a lot
of communication, the distance between the two curves is
big. This leads to more energy savings (e.g. CG and FT), see
table (II). All discovered frequency scaling factors optimize
both the energy and the performance simultaneously for all

NAS benchmarks. In table (II), we record all optimal scaling
factors results for each benchmark running class C. These
scaling factors give the maximum energy saving percentage
and the minimum performance degradation percentage at the
same time from all available scaling factors.

Table II: The scaling factors results

Program Optimal Energy Performance Energy-Perf.
Name Scaling Factor Saving % Degradation % Distance
CG 1.56 39.23 14.88 24.35
MG 1.47 34.97 21.70 13.27
EP 1.04 22.14 20.73 1.41
LU 1.38 35.83 22.49 13.34
BT 1.31 29.60 21.28 8.32
SP 1.38 33.48 21.36 12.12
FT 1.47 34.72 19.00 15.72

As shown in table (II), when the optimal scaling factor
has a big value we can gain more energy savings as in CG
and FT benchmarks. The opposite happens when the optimal
scaling factor has a small value as in BT and EP benchmarks.
Our algorithm selects a big scaling factor value when the



communication and the other slacks times are big and smaller
ones in opposite cases. In EP there are no communication
inside the iterations. This leads our algorithm to select smaller
scaling factor values (inducing smaller energy savings).

C. Results comparison

In this section, we compare our scaling factor selection
method with Rauber and Rünger methods [4]. They had two
scenarios, the first is to reduce energy to the optimal level
without considering the performance as in EQ (8). We refer
to this scenario as RE . The second scenario is similar to the
first except setting the slower task to the maximum frequency
(when the scale S = 1) to keep the performance from
degradation as mush as possible. We refer to this scenario as
RE−P . While we refer to our algorithm as EPSA (Energy to
Performance Scaling Algorithm). The comparison is made in
tables III, IV, and V. These tables show the results of our
method and Rauber and Rünger scenarios for all the NAS
benchmarks programs for classes A, B and C.

As shown in tables III, IV and V, the (RE−P ) method
outperforms the (RE) method in terms of performance and
energy reduction. The (RE−P ) method also gives better energy
savings than our method. However, although our scaling factor
is not optimal for energy reduction, the results in these tables
prove that our algorithm returns the best scaling factor that sat-
isfy our objective method: the largest distance between energy
reduction and performance degradation. Figure 5 illustrates
even better the distance between the energy reduction and
performance degradation. The negative values mean that one of
the two objectives (energy or performance) have been degraded
more than the other. The positive trade-offs with the highest
values lead to maximum energy savings while keeping the
performance degradation as low as possible. Our algorithm
always gives the highest positive energy to performance trade-
offs while Rauber and Rünger’s method, (RE−P ), gives some-
times negative trade-offs such as in BT and EP.

VIII. CONCLUSION

In this paper, we have presented a new online scaling factor
selection method that optimizes simultaneously the energy
and performance of a distributed application running on an
homogeneous cluster. It uses the computation and communi-
cation times measured at the first iteration to predict energy
consumption and the performance of the parallel application
at every available frequency. Then, it selects the scaling factor
that gives the best trade-off between energy reduction and
performance which is the maximum distance between the
energy and the inverted performance curves. To evaluate this
method, we have applied it to the NAS benchmarks and it was
compared to Rauber and Rünger methods while being executed
on the simulator SimGrid. The results showed that our method,
outperforms Rauber and Rünger’s methods in terms of energy-
performance ratio.

In the near future, we would like to adapt this scaling
factor selection method to heterogeneous platforms where
each node has different characteristics. In particular, each
CPU has different available frequencies, energy consumption
and performance. It would be also interesting to develop a
new energy model for asynchronous parallel iterative methods

Table III: Comparing results for the NAS class A

Method Program Factor Energy Performance Energy-Perf.
Name Name Value Saving % Degradation % Distance
EPSA CG 1.56 37.02 13.88 23.14
RE−P CG 2.14 42.77 25.27 17.50
RE CG 2.14 42.77 26.46 16.31
EPSA MG 1.47 27.66 16.82 10.84
RE−P MG 2.14 34.45 31.84 2.61
RE MG 2.14 34.48 33.65 0.80
EPSA EP 1.19 25.32 20.79 4.53
RE−P EP 2.05 41.45 55.67 -14.22
RE EP 2.05 42.09 57.59 -15.50
EPSA LU 1.56 39.55 19.38 20.17
RE−P LU 2.14 45.62 27.00 18.62
RE LU 2.14 45.66 33.01 12.65
EPSA BT 1.31 29.60 20.53 9.07
RE−P BT 2.10 45.53 49.63 -4.10
RE BT 2.10 43.93 52.86 -8.93
EPSA SP 1.38 33.51 15.65 17.86
RE−P SP 2.11 45.62 42.52 3.10
RE SP 2.11 45.78 43.09 2.69
EPSA FT 1.25 25.00 10.80 14.20
RE−P FT 2.10 39.29 34.30 4.99
RE FT 2.10 37.56 38.21 -0.65

Table IV: Comparing results for the NAS class B

Method Program Factor Energy Performance Energy-Perf.
Name Name Value Saving % Degradation % Distance
EPSA CG 1.66 39.23 16.63 22.60
RE−P CG 2.15 45.34 27.60 17.74
RE CG 2.15 45.34 28.88 16.46
EPSA MG 1.47 34.98 18.35 16.63
RE−P MG 2.14 43.55 36.42 7.13
RE MG 2.14 43.56 37.07 6.49
EPSA EP 1.08 20.29 17.15 3.14
RE−P EP 2.00 42.38 56.88 -14.50
RE EP 2.00 39.73 59.94 -20.21
EPSA LU 1.47 38.57 21.34 17.23
RE−P LU 2.10 43.62 36.51 7.11
RE LU 2.10 43.61 38.54 5.07
EPSA BT 1.31 29.59 20.88 8.71
RE−P BT 2.10 44.53 53.05 -8.52
RE BT 2.10 42.93 52.80 -9.87
EPSA SP 1.38 33.44 19.24 14.20
RE−P SP 2.15 45.69 43.20 2.49
RE SP 2.15 45.41 44.47 0.94
EPSA FT 1.38 34.40 14.57 19.83
RE−P FT 2.13 42.98 37.35 5.63
RE FT 2.13 43.04 37.90 5.14

Table V: Comparing results for the NAS class C

Method Program Factor Energy Performance Energy-Perf.
Name Name Value Saving % Degradation % Distance
EPSA CG 1.56 39.23 14.88 24.35
RE−P CG 2.15 45.36 25.89 19.47
RE CG 2.15 45.36 26.70 18.66
EPSA MG 1.47 34.97 21.69 13.27
RE−P MG 2.15 43.65 40.45 3.20
RE MG 2.15 43.64 41.38 2.26
EPSA EP 1.04 22.14 20.73 1.41
RE−P EP 1.92 39.40 56.33 -16.93
RE EP 1.92 38.10 56.35 -18.25
EPSA LU 1.38 35.83 22.49 13.34
RE−P LU 2.15 44.97 41.00 3.97
RE LU 2.15 44.97 41.80 3.17
EPSA BT 1.31 29.60 21.28 8.32
RE−P BT 2.13 45.60 49.84 -4.24
RE BT 2.13 44.90 55.16 -10.26
EPSA SP 1.38 33.48 21.35 12.12
RE−P SP 2.10 45.69 43.60 2.09
RE SP 2.10 45.75 44.10 1.65
EPSA FT 1.47 34.72 19.00 15.72
RE−P FT 2.04 39.40 37.10 2.30
RE FT 2.04 39.35 37.70 1.65
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Figure 5: Comparing our method to Rauber and Rünger’s methods

where the number of iterations is not known in advance and
depends on the global convergence of the iterative system.
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