]> AND Private Git Repository - mpi-energy.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Last version
[mpi-energy.git] / paper.tex
index bfa1bc123373a5f472f6d8cc6a349e7fd2baba36..962a22b800097d80365ca9d4d5f5fee16f6d72a9 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -14,8 +14,9 @@
 % \usepackage{secdot}
 %\usepackage[font={footnotesize,bt}]{caption}
 %\usepackage[font=scriptsize,labelfont=bf]{caption}
+\usepackage{xspace}
 \usepackage[textsize=footnotesize]{todonotes}
-\newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}}
+\newcommand{\AG}[2][inline]{\todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
 
 \begin{document}
 
@@ -109,7 +110,9 @@ presented and classified in two parts : offline and online methods.
 The DVFS offline methods are static and are not executed during the runtime of
 the program. Some approaches used heuristics to select the best DVFS state
 during the compilation phases as an example in Azevedo et al.~\cite{40}. He used
-intra-task algorithm to choose the DVFS setting when there are dependency points
+intra-task algorithm
+\AG{what is an ``intra-task algorithm''?}
+to choose the DVFS setting when there are dependency points
 between tasks. While in~\cite{29}, Xie et al. used breadth-first search
 algorithm to do that. Their goal is saving energy with time limits. Another
 approaches gathers and stores the runtime information for each DVFS state, then
@@ -166,11 +169,13 @@ we consider execution of the synchronous tasks on distributed homogeneous
 platform. These tasks can exchange the data via synchronous memory passing.
 \begin{figure*}[t]
   \centering
-  \subfloat[Synch. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
-  \subfloat[Synch. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
+  \subfloat[Sync. Imbalanced Communications]{\includegraphics[scale=0.67]{synch_tasks}\label{fig:h1}}
+  \subfloat[Sync. Imbalanced Computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
   \caption{Parallel Tasks on Homogeneous Platform}
   \label{fig:homo}
 \end{figure*}
+\AG{On fig.~\ref{fig:h1}, how can there be a synchronization point without communications just before ?\\
+Use ``Sync.'' to abbreviate ``Synchronization''}
 Therefore, the execution time of a task consists of the computation time and the
 communication time. Moreover, the synchronous communications between tasks can
 lead to idle time while tasks wait at the synchronous point for others tasks to
@@ -196,38 +201,40 @@ $P_{dyn}$ is related to the switching activity $\alpha$, load capacitance $C_L$,
 the supply voltage $V$ and operational frequency $f$ respectively as follow :
 \begin{equation}
   \label{eq:pd}
-  P_{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
\textit P_{dyn} = \alpha \cdot C_L \cdot V^2 \cdot f
 \end{equation}
 The static power $P_{static}$ captures the leakage power consumption as well as
 the power consumption of peripheral devices like the I/O subsystem.
 \begin{equation}
   \label{eq:ps}
-  P_{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
\textit P_{static}  = V \cdot N \cdot K_{design} \cdot I_{leak}
 \end{equation}
 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
 design dependent parameter and $I_{leak}$ is a technology-dependent
 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
 of the dynamic and the static power multiply by the execution time for example
-see~\cite{36,15} .
+see~\cite{36,15}.
 \begin{equation}
   \label{eq:eind}
-  E_{ind} = ( P_{dyn} + P_{static} ) \cdot T
+  \textit E_{ind} = ( P_{dyn} + P_{static} ) \cdot T
 \end{equation}
 The dynamic voltage and frequency scaling (DVFS) is a process that allowed in
 modern processors to reduce the dynamic power by scaling down the voltage and
 frequency. Its main objective is to reduce the overall energy
 consumption~\cite{37}. The operational frequency \emph f depends linearly on the
-supply voltage $V$, i.e., $V = \beta . f$ with some constant $\beta$. This
+supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
 equation is used to study the change of the dynamic voltage with respect to
 various frequency values in~\cite{3}. The reduction process of the frequency are
 expressed by scaling factor \emph S. The scale \emph S is the ratio between the
 maximum and the new frequency as in EQ~(\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
 S = \frac{F_{max}}{F_{new}}
+ S = \frac{F_{max}}{F_{new}}
 \end{equation}
-The value of the scale \emph S is grater than 1 when changing the frequency to
-any new frequency value(\emph {P-state}) in governor. It is equal to 1 when the
+The value of the scale $S$ is greater than 1 when changing the frequency to
+any new frequency value (\emph {P-state}) in governor.
+\AG{Explain what's a governor}
+It is equal to 1 when the
 frequency are set to the maximum frequency.  The energy consumption model for
 parallel homogeneous platform is depending on the scaling factor \emph S. This
 factor reduces quadratically the dynamic power.  Also, this factor increases the
@@ -267,7 +274,7 @@ derivation for this equation (to be minimized) and set it to zero to produce the
 scaling factor as in EQ~(\ref{eq:sopt}).
 \begin{equation}
   \label{eq:sopt}
-  S_{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_{dyn}}{P_{static}} \cdot
\textit  S_{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_{dyn}}{P_{static}} \cdot
     \left( 1 + \sum_{i=2}^{N} \frac{T_i^3}{T_1^3} \right) }
 \end{equation}
 
@@ -300,7 +307,7 @@ any MPI program as a function of the new scaling factor as in the
 EQ~(\ref{eq:tnew}).
 \begin{equation}
   \label{eq:tnew}
-  T_{new} = T_{\textit{Max Comp Old}} \cdot S + T_{\textit{Max Comm Old}}
\textit  T_{new} = T_{\textit{Max Comp Old}} \cdot S + T_{\textit{Max Comm Old}}
 \end{equation}
 The above equation shows that the scaling factor \emph S has linear relation
 with the computation time without affecting the communication time. The
@@ -347,7 +354,7 @@ figure~(\ref{fig:pred}).
 
 This section demonstrates our approach for choosing the optimal scaling
 factor. This factor gives maximum energy reduction taking into account the
-execution time for both computation and communication times . The relation
+execution time for both computation and communication times. The relation
 between the energy and the performance are nonlinear and complex, because the
 relation of the energy with scaling factor is nonlinear and with the performance
 it is linear see~\cite{17}. The relation between the energy and the performance
@@ -357,8 +364,8 @@ between the consumed energy with scaled frequency and the consumed energy
 without scaled frequency :
 \begin{multline}
   \label{eq:enorm}
 E_\textit{Norm} = \frac{E_{Reduced}}{E_{Original}}\\
-  {} = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
\textit E_{Norm} = \frac{\textit E_{Reduced}}{\textit E_{Original}} \\
+        {} = \frac{ P_{dyn} \cdot S_i^{-2} \cdot
                \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
                P_{static} \cdot T_1 \cdot S_i \cdot N  }{
               P_{dyn} \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) +
@@ -374,9 +381,9 @@ without scaled frequency :
 By the same way we can normalize the performance as follows :
 \begin{equation}
   \label{eq:pnorm}
-  P_{Norm} = \frac{T_{New}}{T_{Old}}
+\textit  P_{Norm} = \frac{\textit T_{New}}{\textit T_{Old}}
           = \frac{T_{\textit{Max Comp Old}} \cdot S +
-              T_{\textit{Max Comm Old}}}{T_{Old}}
+           T_{\textit{Max Comm Old}}}{\textit T_{Old}}
 \end{equation}
 The second problem is the optimization operation for both energy and performance
 is not in the same direction. In other words, the normalized energy and the
@@ -395,8 +402,8 @@ have the same direction. Therefore, we inverse the equation of normalize
 performance as follows :
 \begin{equation}
   \label{eq:pnorm_en}
-  P^{-1}_{Norm} = \frac{T_{Old}}{T_{New}}
-               = \frac{T_{Old}}{T_{\textit{Max Comp Old}} \cdot S +
+\textit  P^{-1}_{Norm} = \frac{\textit T_{Old}}{\textit T_{New}}
+               = \frac{\textit T_{Old}}{T_{\textit{Max Comp Old}} \cdot S +
                  T_{\textit{Max Comm Old}}}
 \end{equation}
 \begin{figure*}
@@ -417,8 +424,8 @@ in the same time, see figure~(\ref{fig:r1}). Then our objective function has the
 following form:
 \begin{equation}
   \label{eq:max}
-  \textit{MaxDist} = \max (\overbrace{P^{-1}_{Norm}}^{\text{Maximize}} -
-                           \overbrace{E_{Norm}}^{\text{Minimize}} )
+  \textit{MaxDist} = \max (\overbrace{\textit P^{-1}_{Norm}}^{\text{Maximize}} -
+                           \overbrace{\textit E_{Norm}}^{\text{Minimize}} )
 \end{equation}
 Then we can select the optimal scaling factor that satisfy the
 EQ~(\ref{eq:max}).  Our objective function can works with any energy model or
@@ -483,8 +490,7 @@ in the MPI program.
   \State -Computations Section.
    \State -Communications Section.
    \If {$(J==1)$} 
-     \State -Gather all times of computation and\par
-        \State      communication from each node.
+     \State -Gather all times of computation and communication from\par each node.
      \State -Call EPSA with these times.
      \State -Calculate the new frequency from optimal scale.
      \State -Set the new frequency to the system.
@@ -530,7 +536,7 @@ frequencies.
     \hline
     Max & Min & Backbone & Backbone&Link &Link& Sharing  \\
     Freq. & Freq. & Bandwidth & Latency & Bandwidth& Latency&Policy  \\ \hline
-    2.5 &800 & 2.25 GBps &$5\times 10^{-7} s$& 1 GBps & $5\times 10^{-5}$ s&Full  \\
+    2.5 &800 & 2.25 GBps &$5\times 10^{-7} s$& 1 GBps & $5\times 10^{-5} s$ &Full  \\
     GHz& MHz&  & & &  &Duplex  \\\hline
   \end{tabular}
   \label{table:platform}
@@ -583,7 +589,7 @@ same time over all available scales.
     BT & 1.31 &29.60&21.28 &8.32\\ \hline
     SP & 1.38 &33.48&21.36 &12.12\\ \hline
     FT & 1.47 &34.72&19.00 &15.72\\ \hline
-  \end{tabular}
+  \end{tabular}        
   \label{table:factors results}
   % is used to refer this table in the text
 \end{table}
@@ -774,6 +780,12 @@ than the first.
 Computations have been performed on the supercomputer facilities of the
 Mésocentre de calcul de Franche-Comté.
 
+% trigger a \newpage just before the given reference
+% number - used to balance the columns on the last page
+% adjust value as needed - may need to be readjusted if
+% the document is modified later
+%\IEEEtriggeratref{15}
+
 \bibliographystyle{IEEEtran}
 \bibliography{IEEEabrv,my_reference}
 \end{document}
@@ -782,8 +794,8 @@ Mésocentre de calcul de Franche-Comté.
 %%% mode: latex
 %%% TeX-master: t
 %%% fill-column: 80
-%%%ispell-local-dictionary: "american"
+%%% ispell-local-dictionary: "american"
 %%% End:
 
 %  LocalWords:  Badri Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
-%  LocalWords:  CMOS EQ EPSA
+%  LocalWords:  CMOS EQ EPSA Franche Comté Tflop