\end{equation}
\begin{figure}
\centering
- \subfloat[Converted relation.]{%
- \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}%
\subfloat[Real relation.]{%
- \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}
- \label{fig:rel}
+ \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}%
+ \subfloat[Converted relation.]{%
+ \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}
\caption{The energy and performance relation}
\end{figure}
Then, we can model our objective function as finding the maximum distance
function has the following form:
\begin{equation}
\label{eq:max}
- Max Dist = \max_{j=1,2,\dots,F}
+ \textit{Max Dist} = \max_{j=1,2,\dots,F}
(\overbrace{P^{-1}_\textit{Norm}(S_j)}^{\text{Maximize}} -
\overbrace{E_\textit{Norm}(S_j)}^{\text{Minimize}} )
\end{equation}