]> AND Private Git Repository - mpi-energy.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Use package url to format email addresses.
[mpi-energy.git] / paper.tex
index 5ba8cc7b592dbd5c46aab3b6dfc2931b806e3b1c..bcbfb5dc7ebbb8fd00740b2067f0bd7dd7edc4a1 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -10,6 +10,9 @@
 \usepackage{colortbl}
 \usepackage{amsmath}
 
 \usepackage{colortbl}
 \usepackage{amsmath}
 
+\usepackage{url}
+\DeclareUrlCommand\email{\urlstyle{same}}
+
 \usepackage[autolanguage,np]{numprint}
 \renewcommand*\npunitcommand[1]{\text{#1}}
 
 \usepackage[autolanguage,np]{numprint}
 \renewcommand*\npunitcommand[1]{\text{#1}}
 
@@ -34,7 +37,7 @@
     University of Franche-Comté\\
     IUT de Belfort-Montbéliard, 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
     Fax  : +33~3~84~58~77~32\\
     University of Franche-Comté\\
     IUT de Belfort-Montbéliard, 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
     Fax  : +33~3~84~58~77~32\\
-    Email: \{jean-claude.charr,raphael.couturier,ahmed.fanfakh\_badri\_muslim,arnaud.giersch\}@univ-fcomte.fr
+    Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
    }
   }
 
    }
   }
 
@@ -176,8 +179,8 @@ we consider execution of the synchronous tasks on distributed homogeneous
 platform. These tasks can exchange the data via synchronous message passing.
 \begin{figure*}[t]
   \centering
 platform. These tasks can exchange the data via synchronous message passing.
 \begin{figure*}[t]
   \centering
-  \subfloat[Sync. imbalanced communications]{\includegraphics[scale=0.67]{commtasks}\label{fig:h1}}
-  \subfloat[Sync. imbalanced computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}}
+  \subfloat[Sync. imbalanced communications]{\includegraphics[scale=0.67]{fig/commtasks}\label{fig:h1}}
+  \subfloat[Sync. imbalanced computations]{\includegraphics[scale=0.67]{fig/compt}\label{fig:h2}}
   \caption{Parallel tasks on homogeneous platform}
   \label{fig:homo}
 \end{figure*}
   \caption{Parallel tasks on homogeneous platform}
   \label{fig:homo}
 \end{figure*}
@@ -342,10 +345,10 @@ performance as follows:
 \begin{figure*}
   \centering
   \subfloat[Converted relation.]{%
 \begin{figure*}
   \centering
   \subfloat[Converted relation.]{%
-    \includegraphics[width=.4\textwidth]{file.eps}\label{fig:r1}}%
+    \includegraphics[width=.4\textwidth]{fig/file}\label{fig:r1}}%
   \qquad%
   \subfloat[Real relation.]{%
   \qquad%
   \subfloat[Real relation.]{%
-    \includegraphics[width=.4\textwidth]{file3.eps}\label{fig:r2}}
+    \includegraphics[width=.4\textwidth]{fig/file3}\label{fig:r2}}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure*}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure*}
@@ -468,10 +471,10 @@ time values. These scaling factors are computed by dividing the maximum
 frequency by the new one see EQ~(\ref{eq:s}). 
 \begin{figure*}[t]
   \centering
 frequency by the new one see EQ~(\ref{eq:s}). 
 \begin{figure*}[t]
   \centering
-  \includegraphics[width=.328\textwidth]{cg_per.eps}\hfill%
-  \includegraphics[width=.328\textwidth]{mg_pre.eps}\hfill%
- % \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
-  \includegraphics[width=.328\textwidth]{lu_pre.eps}\hfill%
+  \includegraphics[width=.328\textwidth]{fig/cg_per}\hfill%
+  \includegraphics[width=.328\textwidth]{fig/mg_pre}\hfill%
+ % \includegraphics[width=.4\textwidth]{fig/bt_pre}\qquad%
+  \includegraphics[width=.328\textwidth]{fig/lu_pre}\hfill%
   \caption{Comparing predicted to real execution time}
   \label{fig:pred}
 \end{figure*}
   \caption{Comparing predicted to real execution time}
   \label{fig:pred}
 \end{figure*}
@@ -509,12 +512,12 @@ energy saving percent and the minimum performance degradation percent at the
 same time from all available scaling factors.
 \begin{figure*}[t]
   \centering
 same time from all available scaling factors.
 \begin{figure*}[t]
   \centering
-  \includegraphics[width=.328\textwidth]{ep.eps}\hfill%
-  \includegraphics[width=.328\textwidth]{cg.eps}\hfill%
-  \includegraphics[width=.328\textwidth]{sp.eps}
-  \includegraphics[width=.328\textwidth]{lu.eps}\hfill%
-  \includegraphics[width=.328\textwidth]{bt.eps}\hfill%
-  \includegraphics[width=.328\textwidth]{ft.eps}
+  \includegraphics[width=.328\textwidth]{fig/ep}\hfill%
+  \includegraphics[width=.328\textwidth]{fig/cg}\hfill%
+  \includegraphics[width=.328\textwidth]{fig/sp}
+  \includegraphics[width=.328\textwidth]{fig/lu}\hfill%
+  \includegraphics[width=.328\textwidth]{fig/bt}\hfill%
+  \includegraphics[width=.328\textwidth]{fig/ft}
   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
   \label{fig:nas}
 \end{figure*}
   \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks}
   \label{fig:nas}
 \end{figure*}
@@ -693,9 +696,9 @@ gives the highest positive energy to performance trade-offs while Rauber and Rü
 EP.
 \begin{figure*}[t]
   \centering
 EP.
 \begin{figure*}[t]
   \centering
-  \includegraphics[width=.328\textwidth]{compare_class_A.pdf}
-  \includegraphics[width=.328\textwidth]{compare_class_B.pdf}
-  \includegraphics[width=.328\textwidth]{compare_class_c.pdf}
+  \includegraphics[width=.328\textwidth]{fig/compare_class_A}
+  \includegraphics[width=.328\textwidth]{fig/compare_class_B}
+  \includegraphics[width=.328\textwidth]{fig/compare_class_C}
   \caption{Comparing our method to Rauber and Rünger methods}
   \label{fig:compare}
 \end{figure*}
   \caption{Comparing our method to Rauber and Rünger methods}
   \label{fig:compare}
 \end{figure*}