-factors. In our experiments over a homogeneous cluster described in section~\ref{sec.expe},
-this algorithm has a small execution time. It takes \np[$\mu$s]{1.52} on average for 4 nodes and
-\np[$\mu$s]{6.65} on average for 32 nodes. The algorithm complexity is $O(F\cdot
-N)$, where $F$ is the number of available frequencies and $N$ is the number of
-computing nodes. The algorithm is called just once during the execution of the
-program. The DVFS algorithm~(\ref{dvfs}) shows where and when the algorithm is
-called in the MPI program.
+factors. In our experiments over a homogeneous cluster described in
+section~\ref{sec.expe}, this algorithm has a small execution time. It takes
+\np[$\mu$s]{1.52} on average for 4 nodes and \np[$\mu$s]{6.65} on average for 32
+nodes. The algorithm complexity is $O(F\cdot N)$, where $F$ is the number of
+available frequencies and $N$ is the number of computing nodes. The algorithm
+is called just once during the execution of the program. The DVFS
+algorithm~(Fig.~\ref{dvfs}) shows where and when the algorithm is called in the
+MPI program.