X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy.git/blobdiff_plain/0f6674d9fe0512b7509ffc2e2a1e2d484c8354c6..dc453bf7b9a499374cf16e53d3ce9a178af11d99:/paper.tex diff --git a/paper.tex b/paper.tex index 2838f2d..f41699c 100644 --- a/paper.tex +++ b/paper.tex @@ -360,10 +360,9 @@ performance as follows: \begin{figure} \centering \subfloat[Converted relation.]{% - \includegraphics[width=.24\textwidth]{fig/file}\label{fig:r1}}% -% \quad% + \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}% \subfloat[Real relation.]{% - \includegraphics[width=.24\textwidth]{fig/file3}\label{fig:r2}} + \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}} \label{fig:rel} \caption{The energy and performance relation} \end{figure} @@ -501,10 +500,10 @@ execution time values. These scaling factors are computed by dividing the maximum frequency by the new one see EQ~(\ref{eq:s}). \begin{figure} \centering - \includegraphics[width=.24\textwidth]{fig/cg_per}\hfill% - % \includegraphics[width=.328\textwidth]{fig/mg_pre}\hfill% - % \includegraphics[width=.4\textwidth]{fig/bt_pre}\qquad% - \includegraphics[width=.24\textwidth]{fig/lu_pre}\hfill% + \includegraphics[width=.5\linewidth]{fig/cg_per}\hfill% + % \includegraphics[width=.5\linewidth]{fig/mg_pre}\hfill% + % \includegraphics[width=.5\linewidth]{fig/bt_pre}\qquad% + \includegraphics[width=.5\linewidth]{fig/lu_pre}\hfill% \caption{Comparing predicted to real execution times} \label{fig:pred} \end{figure} @@ -546,12 +545,12 @@ factors give the maximum energy saving percentage and the minimum performance degradation percentage at the same time from all available scaling factors. \begin{figure*}[t] \centering - \includegraphics[width=.33\textwidth]{fig/ep}\hfill% - \includegraphics[width=.33\textwidth]{fig/cg}\hfill% - % \includegraphics[width=.328\textwidth]{fig/sp} - % \includegraphics[width=.328\textwidth]{fig/lu}\hfill% - \includegraphics[width=.33\textwidth]{fig/bt}\hfill% - % \includegraphics[width=.328\textwidth]{fig/ft} + \includegraphics[width=.33\linewidth]{fig/ep}\hfill% + \includegraphics[width=.33\linewidth]{fig/cg}\hfill% + % \includegraphics[width=.328\linewidth]{fig/sp} + % \includegraphics[width=.328\linewidth]{fig/lu}\hfill% + \includegraphics[width=.33\linewidth]{fig/bt} + % \includegraphics[width=.328\linewidth]{fig/ft} \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks} \label{fig:nas} \end{figure*} @@ -635,9 +634,9 @@ while Rauber and Rünger's method, ($R_{E-P}$), gives sometimes negative trade-offs such as in BT and EP. \begin{figure}[t] \centering -% \includegraphics[width=.328\textwidth]{fig/compare_class_A} -% \includegraphics[width=.328\textwidth]{fig/compare_class_B} - \includegraphics[width=.49\textwidth]{fig/compare_class_C} +% \includegraphics[width=.328\linewidth]{fig/compare_class_A} +% \includegraphics[width=.328\linewidth]{fig/compare_class_B} + \includegraphics[width=\linewidth]{fig/compare_class_C} \caption{Comparing our method to Rauber and Rünger's methods} \label{fig:compare} \end{figure}