X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy.git/blobdiff_plain/44fd629ef4ec2b0ae723f92d30015d4930f34b16..902f3596f3c6f21def5c1d8374302b0962ad9345:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index f3bc3db..a7a269f 100644 --- a/paper.tex +++ b/paper.tex @@ -359,11 +359,10 @@ performance as follows: \end{equation} \begin{figure} \centering - \subfloat[Converted relation.]{% - \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}}% \subfloat[Real relation.]{% - \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}} - \label{fig:rel} + \includegraphics[width=.5\linewidth]{fig/file3}\label{fig:r2}}% + \subfloat[Converted relation.]{% + \includegraphics[width=.5\linewidth]{fig/file}\label{fig:r1}} \caption{The energy and performance relation} \end{figure} Then, we can model our objective function as finding the maximum distance @@ -374,7 +373,7 @@ performance) at the same time, see Figure~(\ref{fig:r1}). Then our objective function has the following form: \begin{equation} \label{eq:max} - Max Dist = \max_{j=1,2,\dots,F} + \textit{Max Dist} = \max_{j=1,2,\dots,F} (\overbrace{P^{-1}_\textit{Norm}(S_j)}^{\text{Maximize}} - \overbrace{E_\textit{Norm}(S_j)}^{\text{Minimize}} ) \end{equation}