X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy.git/blobdiff_plain/7cabf07f0e47ee0d095a36614a04b3cd0b6d9ab3..deaad9c91bd56f904fe3c5ff93664431a18d4f44:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 618e7ad..9c374ba 100644 --- a/paper.tex +++ b/paper.tex @@ -345,18 +345,18 @@ the consumed energy with scaled frequency and the consumed energy without scaled frequency: \begin{multline} \label{eq:enorm} - \Enorm = \frac{ \Ereduced}{\Eoriginal} \\ - {} = \frac{\Pdyn \cdot S_1^{-2} \cdot + \Enorm(S) = \frac{ \Ereduced}{\Eoriginal} \\ + {} = \frac{\Pdyn \cdot S^{-2} \cdot \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) + - \Pstatic \cdot T_1 \cdot S_1 \cdot N}{ + \Pstatic \cdot T_1 \cdot S \cdot N}{ \Pdyn \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) + \Pstatic \cdot T_1 \cdot N } \end{multline} In the same way we can normalize the performance as follows: \begin{equation} \label{eq:pnorm} - \Pnorm = \frac{\Tnew}{\Told} - = \frac{\TmaxCompOld \cdot S + \TmaxCommOld}{ + \Pnorm(S) = \frac{\Tnew}{\Told} + = \frac{\TmaxCompOld \cdot S + \TmaxCommOld}{ \TmaxCompOld + \TmaxCommOld} \end{equation} The second problem is that the optimization operation for both energy and @@ -377,7 +377,7 @@ direction. Therefore, we inverse the equation of the normalized performance as follows: \begin{equation} \label{eq:pnorm_en} - \Pnorm^{-1} = \frac{ \Told}{ \Tnew} + \Pnorm^{-1}(S) = \frac{ \Told}{ \Tnew} = \frac{\TmaxCompOld + \TmaxCommOld}{\TmaxCompOld \cdot S + \TmaxCommOld} @@ -433,13 +433,10 @@ the objective function described above. \For {$j = 2$ to $\Pstates$} \State $\Fnew \gets \Fnew - \Fdiff$ \State $S \gets \Fmax / \Fnew$ - \State $S_i \gets S \cdot \frac{T_1}{T_i} - = \frac{\Fmax}{\Fnew} \cdot \frac{T_1}{T_i}$ - for $i=1,\dots,N$ \State $\Enorm \gets - \frac{\Pdyn \cdot S_1^{-2} \cdot + \frac{\Pdyn \cdot S^{-2} \cdot \left( T_1 + \sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) + - \Pstatic \cdot T_1 \cdot S_1 \cdot N }{ + \Pstatic \cdot T_1 \cdot S \cdot N }{ \Pdyn \cdot \left(T_1+\sum_{i=2}^{N}\frac{T_i^3}{T_1^2}\right) + \Pstatic \cdot T_1 \cdot N }$