X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy.git/blobdiff_plain/bdb61bc896534ac147bcabe2c6347ae33eb97912..6dbf3f1a90a554d6a451664d2c6a5cbca41c6e9d:/paper.tex diff --git a/paper.tex b/paper.tex index 5ba8cc7..c8577cb 100644 --- a/paper.tex +++ b/paper.tex @@ -176,8 +176,8 @@ we consider execution of the synchronous tasks on distributed homogeneous platform. These tasks can exchange the data via synchronous message passing. \begin{figure*}[t] \centering - \subfloat[Sync. imbalanced communications]{\includegraphics[scale=0.67]{commtasks}\label{fig:h1}} - \subfloat[Sync. imbalanced computations]{\includegraphics[scale=0.67]{compt}\label{fig:h2}} + \subfloat[Sync. imbalanced communications]{\includegraphics[scale=0.67]{fig/commtasks}\label{fig:h1}} + \subfloat[Sync. imbalanced computations]{\includegraphics[scale=0.67]{fig/compt}\label{fig:h2}} \caption{Parallel tasks on homogeneous platform} \label{fig:homo} \end{figure*} @@ -342,10 +342,10 @@ performance as follows: \begin{figure*} \centering \subfloat[Converted relation.]{% - \includegraphics[width=.4\textwidth]{file.eps}\label{fig:r1}}% + \includegraphics[width=.4\textwidth]{fig/file}\label{fig:r1}}% \qquad% \subfloat[Real relation.]{% - \includegraphics[width=.4\textwidth]{file3.eps}\label{fig:r2}} + \includegraphics[width=.4\textwidth]{fig/file3}\label{fig:r2}} \label{fig:rel} \caption{The energy and performance relation} \end{figure*} @@ -468,10 +468,10 @@ time values. These scaling factors are computed by dividing the maximum frequency by the new one see EQ~(\ref{eq:s}). \begin{figure*}[t] \centering - \includegraphics[width=.328\textwidth]{cg_per.eps}\hfill% - \includegraphics[width=.328\textwidth]{mg_pre.eps}\hfill% - % \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad% - \includegraphics[width=.328\textwidth]{lu_pre.eps}\hfill% + \includegraphics[width=.328\textwidth]{fig/cg_per}\hfill% + \includegraphics[width=.328\textwidth]{fig/mg_pre}\hfill% + % \includegraphics[width=.4\textwidth]{fig/bt_pre}\qquad% + \includegraphics[width=.328\textwidth]{fig/lu_pre}\hfill% \caption{Comparing predicted to real execution time} \label{fig:pred} \end{figure*} @@ -509,12 +509,12 @@ energy saving percent and the minimum performance degradation percent at the same time from all available scaling factors. \begin{figure*}[t] \centering - \includegraphics[width=.328\textwidth]{ep.eps}\hfill% - \includegraphics[width=.328\textwidth]{cg.eps}\hfill% - \includegraphics[width=.328\textwidth]{sp.eps} - \includegraphics[width=.328\textwidth]{lu.eps}\hfill% - \includegraphics[width=.328\textwidth]{bt.eps}\hfill% - \includegraphics[width=.328\textwidth]{ft.eps} + \includegraphics[width=.328\textwidth]{fig/ep}\hfill% + \includegraphics[width=.328\textwidth]{fig/cg}\hfill% + \includegraphics[width=.328\textwidth]{fig/sp} + \includegraphics[width=.328\textwidth]{fig/lu}\hfill% + \includegraphics[width=.328\textwidth]{fig/bt}\hfill% + \includegraphics[width=.328\textwidth]{fig/ft} \caption{Optimal scaling factors for the predicted energy and performance of NAS benchmarks} \label{fig:nas} \end{figure*} @@ -693,9 +693,9 @@ gives the highest positive energy to performance trade-offs while Rauber and Rü EP. \begin{figure*}[t] \centering - \includegraphics[width=.328\textwidth]{compare_class_A.pdf} - \includegraphics[width=.328\textwidth]{compare_class_B.pdf} - \includegraphics[width=.328\textwidth]{compare_class_c.pdf} + \includegraphics[width=.328\textwidth]{fig/compare_class_A} + \includegraphics[width=.328\textwidth]{fig/compare_class_B} + \includegraphics[width=.328\textwidth]{fig/compare_class_C} \caption{Comparing our method to Rauber and Rünger methods} \label{fig:compare} \end{figure*}