]> AND Private Git Repository - mpi-energy.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
last changes
authorafanfakh <afanfakh@fanfakh.afanfakh>
Wed, 19 Mar 2014 09:21:56 +0000 (10:21 +0100)
committerafanfakh <afanfakh@fanfakh.afanfakh>
Wed, 19 Mar 2014 09:21:56 +0000 (10:21 +0100)
paper.tex

index 43d284fab5ae43a9fae64243006f904165684ba4..9ab93a9343fd828904d81f725644652f1471553e 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -100,21 +100,18 @@ The comparison's results show that our
 algorithm gives better energy-time trade off.
 
 This paper is organized as follows: Section~\ref{sec.relwork} presents the works
 algorithm gives better energy-time trade off.
 
 This paper is organized as follows: Section~\ref{sec.relwork} presents the works
-from other authors.  Section~\ref{sec.ptasks} shows the execution of parallel
-tasks and sources of idle times. Section~\ref{sec.energy} resumes the energy
+from other authors.  Section~\ref{sec.exe} shows the execution of parallel
+tasks and sources of idle times.  It resumes the energy
 model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance
 model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance
-of MPI program.  Section~\ref{sec.verif} verifies the performance prediction
-model. Section~\ref{sec.compet} presents the energy-performance trade offs
+of MPI program.  Section~\ref{sec.compet} presents the energy-performance trade offs
 objective function. Section~\ref{sec.optim} demonstrates the proposed
 objective function. Section~\ref{sec.optim} demonstrates the proposed
-energy-performance algorithm. Section~\ref{sec.expe} presents the results of our
-experiments.  Section~\ref{sec.compare} shows the comparison results. Finally,
+energy-performance algorithm. Section~\ref{sec.expe} verifies the performance prediction
+model and presents the results of the proposed algorithm.  Also, It shows the comparison results. Finally,
 we conclude in Section~\ref{sec.concl}.
 we conclude in Section~\ref{sec.concl}.
-\AG{There are too many sections!}
 \section{Related Works}
 \label{sec.relwork}
 
 \section{Related Works}
 \label{sec.relwork}
 
-\AG{Consider introducing the models (sec.~\ref{sec.ptasks},
-  maybe~\ref{sec.energy}) before related works}
+\AG{Consider introducing the models sec.~\ref{sec.exe} maybe before related works}
 
 In the this section some heuristics to compute the scaling factor are
 presented and classified in two parts: offline and online methods.
 
 In the this section some heuristics to compute the scaling factor are
 presented and classified in two parts: offline and online methods.
@@ -169,10 +166,10 @@ platforms. The primary contributions of this paper are:
 \item The proposed algorithm works online without profiling or training as
   in~\cite{38,34}.
 \end{enumerate}
 \item The proposed algorithm works online without profiling or training as
   in~\cite{38,34}.
 \end{enumerate}
+\section{Execution and Energy of Parallel Tasks on Homogeneous Platform} 
+\label{sec.exe}
 
 
-\section{Parallel Tasks Execution on Homogeneous Platform}
-\label{sec.ptasks}
-
+\subsection{Parallel Tasks Execution on Homogeneous Platform}
 A homogeneous cluster consists of identical nodes in terms of hardware and software. 
 Each node has its own memory and at least one processor which can
 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
 A homogeneous cluster consists of identical nodes in terms of hardware and software. 
 Each node has its own memory and at least one processor which can
 be a multi-core. The nodes are connected via a high bandwidth network. Tasks
@@ -189,19 +186,20 @@ platform. These tasks can exchange the data via synchronous message passing.
 Therefore, the execution time of a task consists of the computation time and the
 communication time. Moreover, the synchronous communications between tasks can
 lead to idle time while tasks wait at the synchronization barrier for other tasks to
 Therefore, the execution time of a task consists of the computation time and the
 communication time. Moreover, the synchronous communications between tasks can
 lead to idle time while tasks wait at the synchronization barrier for other tasks to
-finish their communications (see figure~(\ref{fig:h1})). The imbalanced communications happen when nodes have to send/receive different amount of data or each node is communicates with different number of nodes. Another source for idle times is the imbalanced computations. This happens when processing different
-amounts of data on each processor  (see figure~(\ref{fig:h2})). In
-this case the fastest tasks have to wait at the synchronization barrier for the
-slowest tasks to finish their job. In both cases the overall execution time
-of the program is the execution time of the slowest task as:
+finish their communications (see figure~(\ref{fig:h1})). The imbalanced communications 
+happen when nodes have to send/receive different amount of data or each node is communicates 
+with different number of nodes. Another source for idle times is the imbalanced computations.  
+This happens when processing different amounts of data on each processor  (see figure~(\ref{fig:h2})).  
+In this case the fastest tasks have to wait at the synchronization barrier for the 
+slowest tasks to finish their job. In both cases the overall execution time 
+of the program is the execution time of the slowest task as: 
 \begin{equation}
   \label{eq:T1}
   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
 \end{equation}
 where $T_i$ is the execution time of task $i$.
 
 \begin{equation}
   \label{eq:T1}
   \textit{Program Time} = \max_{i=1,2,\dots,N} T_i
 \end{equation}
 where $T_i$ is the execution time of task $i$.
 
-\section{Energy Model for Homogeneous Platform}
-\label{sec.energy}
+\subsection{Energy Model for Homogeneous Platform}
 
 The energy consumption by the processor consists of two power metrics: the
 dynamic and the static power. This general power formulation is used by many
 
 The energy consumption by the processor consists of two power metrics: the
 dynamic and the static power. This general power formulation is used by many
@@ -221,9 +219,7 @@ the power consumption of peripheral devices like the I/O subsystem.
 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
 design dependent parameter and $I_{leak}$ is a technology-dependent
 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
 where V is the supply voltage, N is the number of transistors, $K_{design}$ is a
 design dependent parameter and $I_{leak}$ is a technology-dependent
 parameter. Energy consumed by an individual processor $E_{ind}$ is the summation
-of the dynamic and the static power multiplied by the execution time for example
-see~\cite{36,15}.
-\AG{What's an ``execution time for example'' ? Add the correct punctuation.}
+of the dynamic and the static power multiplied by the execution time~\cite{36,15}.
 \begin{equation}
   \label{eq:eind}
    E_\textit{ind} = ( P_\textit{dyn} + P_\textit{static} ) \cdot T
 \begin{equation}
   \label{eq:eind}
    E_\textit{ind} = ( P_\textit{dyn} + P_\textit{static} ) \cdot T
@@ -235,7 +231,7 @@ consumption~\cite{37}. The operational frequency \emph f depends linearly on the
 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
 equation is used to study the change of the dynamic voltage with respect to
 various frequency values in~\cite{3}. The reduction process of the frequency are
 supply voltage $V$, i.e., $V = \beta \cdot f$ with some constant $\beta$. This
 equation is used to study the change of the dynamic voltage with respect to
 various frequency values in~\cite{3}. The reduction process of the frequency are
-expressed by scaling factor \emph S. The scale \emph S is the ratio between the
+expressed by the scaling factor \emph S. The scale \emph S is the ratio between the
 maximum and the new frequency as in EQ~(\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
 maximum and the new frequency as in EQ~(\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
@@ -253,7 +249,6 @@ depending on the frequency scaling factor for homogeneous platform for any
 number of concurrent tasks was developed by Rauber and Rünger~\cite{3}. This
 model considers the two power metrics for measuring the energy of the parallel
 tasks as in EQ~(\ref{eq:energy}):
 number of concurrent tasks was developed by Rauber and Rünger~\cite{3}. This
 model considers the two power metrics for measuring the energy of the parallel
 tasks as in EQ~(\ref{eq:energy}):
-
 \begin{equation}
   \label{eq:energy}
   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
 \begin{equation}
   \label{eq:energy}
   E = P_\textit{dyn} \cdot S_1^{-2} \cdot
@@ -309,14 +304,10 @@ considerable amount of communications embedded in these programs. During the
 communication process the processors remain idle until the communication has
 finished. For that reason any change in the frequency has no impact on the time
 of communication but it has obvious impact on the time of
 communication process the processors remain idle until the communication has
 finished. For that reason any change in the frequency has no impact on the time
 of communication but it has obvious impact on the time of
-computation~\cite{17}. We have made many tests on a real cluster to prove that the
-\AG{Caution: in general, tests don't \emph{prove} anything}
-frequency scaling factor \emph S has a linear relation with computation time
-only. To predict the execution time of MPI program, the communication time and 
+computation~\cite{17}. To predict the execution time of MPI program, the communication time and 
 the computation time for the slower task must be first precisely specified. Secondly, 
 these times are used to predict the execution time for any MPI program as a function of 
 the computation time for the slower task must be first precisely specified. Secondly, 
 these times are used to predict the execution time for any MPI program as a function of 
-the new scaling factor as in the EQ~(\ref{eq:tnew}).
-\AG{EQ~xx, without ``the''. Change everywhere.}
+the new scaling factor as in EQ~(\ref{eq:tnew}).
 \begin{equation}
   \label{eq:tnew}
  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
 \begin{equation}
   \label{eq:tnew}
  \textit  T_\textit{new} = T_\textit{Max Comp Old} \cdot S + T_{\textit{Max Comm Old}}
@@ -327,40 +318,10 @@ communication time consists of the beginning times which an MPI calls for
 sending or receiving till the message is synchronously sent or received. In this
 paper we predict the execution time of the program for any new scaling factor
 value. Depending on this prediction we can produce our energy-performance scaling
 sending or receiving till the message is synchronously sent or received. In this
 paper we predict the execution time of the program for any new scaling factor
 value. Depending on this prediction we can produce our energy-performance scaling
-method as we will show in the coming sections. In the next section we make to finishan\AG{finishan?}
-investigation study for the EQ~(\ref{eq:tnew}).
+method as we will show in the coming sections. In section~\ref{sec.expe} we make an
+investigation study for EQ~(\ref{eq:tnew}).
 
 
-\section{Performance Prediction Verification}
-\label{sec.verif}
 
 
-\AG{This section presents experimental results. It should be put just before Sec.~\ref{sec.expe}}
-In this section we evaluate the precision of our performance prediction methods
-on the NAS benchmarks. We use the EQ~(\ref{eq:tnew}) that predicts the execution
-time for any scale value. The NAS programs run the class B for comparing the
-real execution time with the predicted execution time. Each program runs offline
-with all available scaling factors on 8 or 9 nodes to produce real execution
-time values. These scaling factors are computed by dividing the maximum
-frequency by the new one see EQ~(\ref{eq:s}). In all tests, we use the simulator
-SimGrid/SMPI v3.10 to run the NAS programs.
-\begin{figure*}[t]
-  \centering
-  \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
-  \includegraphics[width=.4\textwidth]{mg_pre.eps}
-  \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
-  \includegraphics[width=.4\textwidth]{lu_pre.eps}
-  \caption{Fitting Predicted to Real Execution Time}
-  \label{fig:pred}
-\end{figure*}
-%see Figure~\ref{fig:pred}
-In our cluster there are 18 available frequency states for each processor from
-2.5 GHz to 800 MHz, there is 100 MHz difference between two successive
-frequencies. For more details on the characteristics of the platform refer to
-table~(\ref{table:platform}). This lead to 18 run states for each program. We
-use seven MPI programs of the NAS parallel benchmarks: CG, MG, EP, FT, BT, LU
-and SP. The average normalized errors between the predicted execution time and
-the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
-example, we are present the execution times of the NAS benchmarks as in the
-figure~(\ref{fig:pred}).
 
 \section{Performance to Energy Competition}
 \label{sec.compet}
 
 \section{Performance to Energy Competition}
 \label{sec.compet}
@@ -395,7 +356,7 @@ The second problem is the optimization operation for both energy and performance
 is not in the same direction. In other words, the normalized energy and the
 performance curves are not in the same direction see figure~(\ref{fig:r2}).
 While the main goal is to optimize the energy and performance in the same
 is not in the same direction. In other words, the normalized energy and the
 performance curves are not in the same direction see figure~(\ref{fig:r2}).
 While the main goal is to optimize the energy and performance in the same
-time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}) the
+time. According to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the
 scaling factor \emph S reduce both the energy and the performance
 simultaneously. But the main objective is to produce maximum energy reduction
 with minimum performance reduction. Many researchers used different strategies
 scaling factor \emph S reduce both the energy and the performance
 simultaneously. But the main objective is to produce maximum energy reduction
 with minimum performance reduction. Many researchers used different strategies
@@ -476,19 +437,15 @@ scaling factor for both energy and performance at the same time.
   \end{algorithmic}
 \end{algorithm}
 The proposed EPSA algorithm works online during the execution time of the MPI
   \end{algorithmic}
 \end{algorithm}
 The proposed EPSA algorithm works online during the execution time of the MPI
-program. It selects the optimal scaling factor by gathering some information
+program. It selects the optimal scaling factor by gathering the computation and communication times 
 from the program after one iteration.
 from the program after one iteration.
-\AG{Which information?}
  This algorithm has small execution time
  This algorithm has small execution time
-(between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes).
-\AG{Algorithmic complexity?}
- The data
-required by this algorithm is the computation time and the communication time
-for each task from the first iteration only. When these times are measured, the
-MPI program calls the EPSA algorithm to choose the new frequency using the
-optimal scaling factor. Then the program sets the new frequency to the
-system\AG[]{???}. The algorithm is called just one time during the execution of the
-program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
+(between 0.00152 $ms$ for 4 nodes to 0.00665 $ms$ for 32 nodes). The algorithm complexity is O(F$\cdot$N), 
+where F is the number of available frequencies and N is the number of computing nodes. The data required 
+by this algorithm is the computation time and the communication time for each task from the first iteration only. 
+When these times are measured, the MPI program calls the EPSA algorithm to choose the new frequency using the
+optimal scaling factor. Then the program changes the new frequency of the system. The algorithm is called just 
+one time during the execution of the program. The DVFS algorithm~(\ref{dvfs}) shows where and when the EPSA algorithm is called
 in the MPI program.
 %\begin{minipage}{\textwidth}
 %\AG{Use the same format as for Algorithm~\ref{$EPSA$}}
 in the MPI program.
 %\begin{minipage}{\textwidth}
 %\AG{Use the same format as for Algorithm~\ref{$EPSA$}}
@@ -509,10 +466,9 @@ in the MPI program.
 \EndFor
 \end{algorithmic}
 \end{algorithm}
 \EndFor
 \end{algorithmic}
 \end{algorithm}
-
-After obtaining the optimal scale factor from the EPSA algorithm.\AG[]{comma} The program
+After obtaining the optimal scale factor from the EPSA algorithm, the program
 calculates the new frequency $F_i$ for each task proportionally to its time
 calculates the new frequency $F_i$ for each task proportionally to its time
-value $T_i$. By substitution of the EQ~(\ref{eq:s}) in the EQ~(\ref{eq:si}), we
+value $T_i$. By substitution of  EQ~(\ref{eq:s}) in EQ~(\ref{eq:si}), we
 can calculate the new frequency $F_i$ as follows:
 \begin{equation}
   \label{eq:fi}
 can calculate the new frequency $F_i$ as follows:
 \begin{equation}
   \label{eq:fi}
@@ -525,22 +481,18 @@ the frequency according to the nodes workloads.
 
 \section{Experimental Results}
 \label{sec.expe}
 
 \section{Experimental Results}
 \label{sec.expe}
-
-The proposed EPSA algorithm was applied to seven MPI programs of the NAS
-benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
-C) for each program. Each program runs on specific number of processors
-proportional to the size of the class.  Each class represents the problem size
-ascending from the class A to C. Additionally, depending on some speed up points
-for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
-respectively. Our experiments are executed on the simulator SimGrid/SMPI
+Our experiments are executed on the simulator SimGrid/SMPI
 v3.10. We design a platform file that simulates a cluster with one core per
 node. This cluster is a homogeneous architecture with distributed memory. The
 detailed characteristics of our platform file are shown in the
 table~(\ref{table:platform}).
 v3.10. We design a platform file that simulates a cluster with one core per
 node. This cluster is a homogeneous architecture with distributed memory. The
 detailed characteristics of our platform file are shown in the
 table~(\ref{table:platform}).
-\AG{Are those characteristics realistic?}
- Each node in the cluster has 18 frequency values
+Each node in the cluster has 18 frequency values
 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
 from 2.5 GHz to 800 MHz with 100 MHz difference between each two successive
-frequencies.
+frequencies. Each core simulates the real Intel core i5-3210M processor. 
+This processor has frequencies from 2.5 GHz to 1.2 GHz with 100 MHz difference between each two successive 
+frequencies. We increased this range to verify the EPSA algorithm takes small execution 
+time while it has a big number of available frequencies. The simulated network link is 1 GB Ethernet (TCP/IP). 
+The backbone of the cluster simulates a high performance switch.
 \begin{table}[htb]
   \caption{Platform File Parameters}
   % title of Table
 \begin{table}[htb]
   \caption{Platform File Parameters}
   % title of Table
@@ -554,11 +506,45 @@ frequencies.
   \end{tabular}
   \label{table:platform}
 \end{table}
   \end{tabular}
   \label{table:platform}
 \end{table}
-Depending on the EQ~(\ref{eq:energy}), we measure the energy consumption for all
+\subsection{Performance Prediction Verification}
+
+In this section we evaluate the precision of our performance prediction methods
+on the NAS benchmarks. We use EQ~(\ref{eq:tnew}) that predicts the execution
+time for any scale value. The NAS programs run the class B for comparing the
+real execution time with the predicted execution time. Each program runs offline
+with all available scaling factors on 8 or 9 nodes to produce real execution
+time values. These scaling factors are computed by dividing the maximum
+frequency by the new one see EQ~(\ref{eq:s}). 
+\begin{figure*}[t]
+  \centering
+  \includegraphics[width=.4\textwidth]{cg_per.eps}\qquad%
+  \includegraphics[width=.4\textwidth]{mg_pre.eps}
+  \includegraphics[width=.4\textwidth]{bt_pre.eps}\qquad%
+  \includegraphics[width=.4\textwidth]{lu_pre.eps}
+  \caption{Fitting Predicted to Real Execution Time}
+  \label{fig:pred}
+\end{figure*}
+%see Figure~\ref{fig:pred}
+In our cluster there are 18 available frequency states for each processor. 
+This lead to 18 run states for each program. We use seven MPI programs of the
+ NAS parallel benchmarks: CG, MG, EP, FT, BT, LU
+and SP. The average normalized errors between the predicted execution time and
+the real time (SimGrid time) for all programs is between 0.0032 to 0.0133. AS an
+example, we are present the execution times of the NAS benchmarks as in the
+figure~(\ref{fig:pred}).
+
+\subsection{The EPSA Results}
+The proposed EPSA algorithm was applied to seven MPI programs of the NAS
+benchmarks (EP, CG, MG, FT, BT, LU and SP). We work on three classes (A, B and
+C) for each program. Each program runs on specific number of processors
+proportional to the size of the class.  Each class represents the problem size
+ascending from the class A to C. Additionally, depending on some speed up points
+for each class we run the classes A, B and C on 4, 8 or 9 and 16 nodes
+respectively. 
+Depending on EQ~(\ref{eq:energy}), we measure the energy consumption for all
 the NAS MPI programs while assuming the power dynamic is equal to \np[W]{20} and
 the NAS MPI programs while assuming the power dynamic is equal to \np[W]{20} and
-the power static is equal to \np[W]{4} for all experiments.
-\AG{How did you choose those values (available frequencies, power consumption)?}
- We run the proposed EPSA
+the power static is equal to \np[W]{4} for all experiments. These power values 
+used by Rauber and Rünger~\cite{3}.  We run the proposed EPSA
 algorithm for all these programs. The results showed that the algorithm selected
 different scaling factors for each program depending on the communication
 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
 algorithm for all these programs. The results showed that the algorithm selected
 different scaling factors for each program depending on the communication
 features of the program as in the figure~(\ref{fig:nas}). This figure shows that
@@ -567,7 +553,7 @@ inversed performance curves, because there are different communication features
 for each MPI program.  When there are little or not communications, the inversed
 performance curve is very close to the energy curve. Then the distance between
 the two curves is very small. This leads to small energy savings. The opposite
 for each MPI program.  When there are little or not communications, the inversed
 performance curve is very close to the energy curve. Then the distance between
 the two curves is very small. This leads to small energy savings. The opposite
-happens when there are a lot of communication, theto finish distance between the two
+happens when there are a lot of communication, the distance between the two
 curves is big.  This leads to more energy savings (e.g. CG and FT), see
 table~(\ref{table:factors results}). All discovered frequency scaling factors
 optimize both the energy and the performance simultaneously for all the NAS
 curves is big.  This leads to more energy savings (e.g. CG and FT), see
 table~(\ref{table:factors results}). All discovered frequency scaling factors
 optimize both the energy and the performance simultaneously for all the NAS
@@ -605,7 +591,6 @@ same time over all available scales.
   \label{table:factors results}
   % is used to refer this table in the text
 \end{table}
   \label{table:factors results}
   % is used to refer this table in the text
 \end{table}
-
 As shown in the table~(\ref{table:factors results}), when the optimal scaling
 factor has big value we can gain more energy savings for example as in CG and
 FT. The opposite happens when the optimal scaling factor is small value as
 As shown in the table~(\ref{table:factors results}), when the optimal scaling
 factor has big value we can gain more energy savings for example as in CG and
 FT. The opposite happens when the optimal scaling factor is small value as
@@ -614,8 +599,7 @@ communication and the other slacks times are big and smaller ones in opposite
 cases. In EP there are no communications inside the iterations. This make our
 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
 
 cases. In EP there are no communications inside the iterations. This make our
 EPSA to selects smaller scaling factor values (inducing smaller energy savings).
 
-\section{Comparing Results}
-\label{sec.compare}
+\subsection{Comparing Results}
 
 In this section, we compare our EPSA algorithm results with Rauber and Rünger
 methods~\cite{3}. They had two scenarios, the first is to reduce energy to
 
 In this section, we compare our EPSA algorithm results with Rauber and Rünger
 methods~\cite{3}. They had two scenarios, the first is to reduce energy to
@@ -752,7 +736,7 @@ NAS benchmarks programs for classes A,B and C.
 % is used to refer this table in the text
 \end{table}
 As shown in these tables our scaling factor is not optimal for energy saving
 % is used to refer this table in the text
 \end{table}
 As shown in these tables our scaling factor is not optimal for energy saving
-such as Rauber's scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
+such as Rauber and Rünger scaling factor EQ~(\ref{eq:sopt}), but it is optimal for both
 the energy and the performance simultaneously. Our $EPSA$ optimal scaling factors
 has better simultaneous optimization for both the energy and the performance
 compared to Rauber and Rünger energy-performance method ($R_{E-P}$). Also, in
 the energy and the performance simultaneously. Our $EPSA$ optimal scaling factors
 has better simultaneous optimization for both the energy and the performance
 compared to Rauber and Rünger energy-performance method ($R_{E-P}$). Also, in
@@ -782,18 +766,14 @@ than the first.
 \end{figure}
 \section{Conclusion}
 \label{sec.concl}
 \end{figure}
 \section{Conclusion}
 \label{sec.concl}
-In this paper we develop the simultaneous energy-performance algorithm. It is works based on the trade off relation between the energy and performance. The results showed that when the scaling factor is big value leads to more energy saving. Also, it show that when the the scaling factor is small value leads to the fact that the scaling factor has bigger impact on performance than energy. Then the algorithm optimize the energy saving and performance in the same time to have positive trade off. The optimal trade off refer to maximum distance between the energy and the inversed performance curves. Also, the results explained when setting the slowest task to maximum frequency usually not have a big improvement on performance. 
-\AG{Needs to be better written.  Add some future works.}
+In this paper we develop the simultaneous energy-performance algorithm. It works based on the trade off relation between the energy and performance. The results showed that when the scaling factor is big value refer to more energy saving. Also, when the scaling factor is smaller value, Then it has bigger impact on performance than energy. The algorithm optimizes the energy saving and performance in the same time to have positive trade off. The optimal trade off represents the maximum distance between the energy and the inversed performance curves. Also, the results explained when setting the slowest task to maximum frequency usually not have a big improvement on performance. In future, we will apply the EPSA algorithm on heterogeneous platform.
 
 \section*{Acknowledgment}
 
 \section*{Acknowledgment}
-
-\AG{Right?}
 Computations have been performed on the supercomputer facilities of the
 Mésocentre de calcul de Franche-Comté.
 As a PhD student, M. Ahmed Fanfakh, would like to thank the University of
 Computations have been performed on the supercomputer facilities of the
 Mésocentre de calcul de Franche-Comté.
 As a PhD student, M. Ahmed Fanfakh, would like to thank the University of
-Babylon (Iraq) for supporting his scholarship program that allows him to work on
-this paper.
-\AG{What about simply: ``[...] for supporting his work.''}
+Babylon (Iraq) for supporting his work.
+
 
 % trigger a \newpage just before the given reference
 % number - used to balance the columns on the last page
 
 % trigger a \newpage just before the given reference
 % number - used to balance the columns on the last page