-The objective of online DVFS orientations works is to dynamically compute and set the frequency of
-the CPU during the runtime of the program for saving energy. Estimating and
-predicting approaches for the energy-time trade offs are developed by Kimura, Peraza, Yu-Liang et al.
-~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
-times. These times happen when the processors have to wait for data from other
-processors to compute their task. For example, during the synchronous
-communications that take place in MPI programs, some processors are
-idle. The optimal DVFS can be selected using learning methods. Therefore, in Dhiman, Hao Shen et al.
-~\cite{39,19} used machine learning to converge to the suitable DVFS
-configuration. Their learning algorithms take big time to converge when the
-number of available frequencies is high. Also, the communication sections of the MPI
-program can be used to save energy. In~\cite{1}, Lim et al. developed an
-algorithm that detects the communication sections and changes the frequency
-during these sections only. This approach changes the frequency many times
-because an iteration may contain more than one communication section. The domain
-of analytical modeling used for choosing the optimal frequency as in Rauber and Rünger~\cite{3}. they
-developed an analytical mathematical model to determine the
-optimal frequency scaling factor for any number of concurrent tasks. They set the slowest task to maximum frequency for maintaining performance. In this paper we compare our algorithm with
-Rauber and Rünger model~\cite{3}, because their model can be used for any number of
-concurrent tasks for homogeneous platforms. The primary contributions of this paper are:
+The objective of the online DVFS orientations is to dynamically compute and set
+the frequency of the CPU for saving energy during the runtime of the
+programs. Estimating and predicting approaches for the energy-time trade offs
+are developed by Kimura, Peraza, Yu-Liang et al. ~\cite{11,2,31}. These works
+select the best DVFS setting depending on the slack times. These times happen
+when the processors have to wait for data from other processors to compute their
+task. For example, during the synchronous communications that take place in MPI
+programs, some processors are idle. The optimal DVFS can be selected using
+learning methods. Therefore, in Dhiman, Hao Shen et al. ~\cite{39,19} used
+machine learning to converge to the suitable DVFS configuration. Their learning
+algorithms take big time to converge when the number of available frequencies is
+high. Also, the communication sections of the MPI program can be used to save
+energy. In~\cite{1}, Lim et al. developed an algorithm that detects the
+communication sections and changes the frequency during these sections
+only. This approach changes the frequency many times because an iteration may
+contain more than one communication section. The domain of analytical modeling
+can also be used for choosing the optimal frequency as in Rauber and
+Rünger~\cite{3}. They developed an analytical mathematical model to determine
+the optimal frequency scaling factor for any number of concurrent tasks. They
+set the slowest task to maximum frequency for maintaining performance. In this
+paper we compare our algorithm with Rauber and Rünger model~\cite{3}, because
+their model can be used for any number of concurrent tasks for homogeneous
+platforms. The primary contributions of this paper are: