]> AND Private Git Repository - mpi-energy.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Corrections + reindent source code.
authorArnaud Giersch <arnaud.giersch@iut-bm.univ-fcomte.fr>
Mon, 17 Mar 2014 22:28:18 +0000 (23:28 +0100)
committerArnaud Giersch <arnaud.giersch@iut-bm.univ-fcomte.fr>
Mon, 17 Mar 2014 22:29:58 +0000 (23:29 +0100)
Hint: use "git log -p --word-diff" to see the differences.

paper.tex

index d7ced09c1873647a0564c5abc9640e3218e719a3..8039f59d1c098b1df5081f3ee0ec978ce698df2d 100644 (file)
--- a/paper.tex
+++ b/paper.tex
   Complete affiliation, add an email address, etc.}
 
 \begin{abstract}
   Complete affiliation, add an email address, etc.}
 
 \begin{abstract}
-The important technique for energy reduction of parallel systems is CPU frequency 
-scaling. This operation used by many researchers to reduce energy consumption in many
-ways. Frequency scaling operation also has big impact on the performance. In some cases, 
-the performance degradation ratio is bigger than energy saving ratio  when the frequency scaled 
-to down level. Therefore, the trade offs between the energy and performance becomes more
-important topic when using this technique. In this paper we developed an algorithm that 
-select the frequency scaling factor for both  energy and performance simultaneously. 
-This algorithm takes into account the communication times when selecting the frequency scaling
-factor. It is works online without training or profiling to have very small overhead.
-The algorithm has better energy-performance trade offs compared to other methods.         
+  The important technique for energy reduction of parallel systems is CPU
+  frequency scaling. This operation is used by many researchers to reduce energy
+  consumption in many ways. Frequency scaling operation also has a big impact on
+  the performances. In some cases, the performance degradation ratio is bigger
+  than energy saving ratio when the frequency is scaled to low level. Therefore,
+  the trade offs between the energy and performance becomes more important topic
+  when using this technique. In this paper we developed an algorithm that select
+  the frequency scaling factor for both energy and performance simultaneously.
+  This algorithm takes into account the communication times when selecting the
+  frequency scaling factor. It works online without training or profiling to
+  have a very small overhead.  The algorithm has better energy-performance trade
+  offs compared to other methods.
 \end{abstract}
 
 \section{Introduction}
 \end{abstract}
 
 \section{Introduction}
@@ -97,13 +99,16 @@ proposed algorithm with Rauber and Rünger methods~\cite{3}.
 The comparison's results show that our
 algorithm gives better energy-time trade off.
 
 The comparison's results show that our
 algorithm gives better energy-time trade off.
 
-This paper is organized as follows: Section~\ref{sec.relwork} presents the works from other authors. 
-Section~\ref{sec.ptasks} shows the execution of parallel tasks and sources of idle times. Section~\ref{sec.energy} resumes the 
-energy model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance of MPI program.
-Section~\ref{sec.verif} verifies the performance prediction model. Section~\ref{sec.compet} presents 
-the energy-performance trade offs objective function. Section~\ref{sec.optim} demonstrates the proposed 
-energy-performance algorithm. Section~\ref{sec.expe} presents the results of our experiments. 
-Section~\ref{sec.compare} shows the comparison results. Finally, we conclude in Section~\ref{sec.concl}.
+This paper is organized as follows: Section~\ref{sec.relwork} presents the works
+from other authors.  Section~\ref{sec.ptasks} shows the execution of parallel
+tasks and sources of idle times. Section~\ref{sec.energy} resumes the energy
+model of homogeneous platform. Section~\ref{sec.mpip} evaluates the performance
+of MPI program.  Section~\ref{sec.verif} verifies the performance prediction
+model. Section~\ref{sec.compet} presents the energy-performance trade offs
+objective function. Section~\ref{sec.optim} demonstrates the proposed
+energy-performance algorithm. Section~\ref{sec.expe} presents the results of our
+experiments.  Section~\ref{sec.compare} shows the comparison results. Finally,
+we conclude in Section~\ref{sec.concl}.
 
 \section{Related Works}
 \label{sec.relwork}
 
 \section{Related Works}
 \label{sec.relwork}
@@ -118,40 +123,43 @@ presented and classified in two parts: offline and online methods.
 
 The DVFS offline methods are static and are not executed during the runtime of
 the program. Some approaches used heuristics to select the best DVFS state
 
 The DVFS offline methods are static and are not executed during the runtime of
 the program. Some approaches used heuristics to select the best DVFS state
-during the compilation phases as for example in Azevedo et al.~\cite{40}. They use
-dynamic voltage scaling (DVS) algorithm to choose the DVS setting when there are dependency points
-between tasks. While in~\cite{29}, Xie et al. used breadth-first search
-algorithm to do that. Their goal is to save energy with time limits. Another
-approach gathers and stores the runtime information for each DVFS state, then
-selects the suitable DVFS offline to optimize energy-time
-trade offs. As an example Rountree et al.~\cite{8}, use liner programming
+during the compilation phases as for example in Azevedo et al.~\cite{40}. They
+use dynamic voltage scaling (DVS) algorithm to choose the DVS setting when there
+are dependency points between tasks. While in~\cite{29}, Xie et al. used
+breadth-first search algorithm to do that. Their goal is to save energy with
+time limits. Another approach gathers and stores the runtime information for
+each DVFS state, then selects the suitable DVFS offline to optimize energy-time
+trade offs. As an example, Rountree et al.~\cite{8} use liner programming
 algorithm, while in~\cite{38,34}, Cochran et al. use multi logistic regression
 algorithm for the same goal. The offline study that shows the DVFS impact on the
 algorithm, while in~\cite{38,34}, Cochran et al. use multi logistic regression
 algorithm for the same goal. The offline study that shows the DVFS impact on the
-communication time of the MPI program is~\cite{17}, where Freeh et al. show that these
-times do not change when the frequency is scaled down.
+communication time of the MPI program is~\cite{17}, where Freeh et al. show that
+these times do not change when the frequency is scaled down.
 
 \subsection{The online DVFS orientations}
 
 
 \subsection{The online DVFS orientations}
 
-The objective of online DVFS orientations works is to dynamically compute and set the frequency of
-the CPU during the runtime of the program for saving energy. Estimating and
-predicting approaches for the energy-time trade offs are developed by Kimura, Peraza, Yu-Liang et al.
-~\cite{11,2,31}. These works select the best DVFS setting depending on the slack
-times. These times happen when the processors have to wait for data from other
-processors to compute their task. For example, during the synchronous
-communications that take place in MPI programs, some processors are
-idle. The optimal DVFS can be selected using learning methods. Therefore, in Dhiman, Hao Shen et al.
-~\cite{39,19} used machine learning to converge to the suitable DVFS
-configuration. Their learning algorithms take big time to converge when the
-number of available frequencies is high. Also, the communication sections of the MPI
-program can be used to save energy. In~\cite{1}, Lim et al. developed an
-algorithm that detects the communication sections and changes the frequency
-during these sections only. This approach changes the frequency many times
-because an iteration may contain more than one communication section. The domain
-of analytical modeling used for choosing the optimal frequency as in Rauber and Rünger~\cite{3}. they
-developed an analytical mathematical model to determine the
-optimal frequency scaling factor for any number of concurrent tasks. They set the slowest task to maximum frequency for maintaining performance.  In this paper we compare our algorithm with
-Rauber and Rünger model~\cite{3}, because their model can be used for any number of
-concurrent tasks for homogeneous platforms. The primary contributions of this paper are:
+The objective of the online DVFS orientations is to dynamically compute and set
+the frequency of the CPU for saving energy during the runtime of the
+programs. Estimating and predicting approaches for the energy-time trade offs
+are developed by Kimura, Peraza, Yu-Liang et al.  ~\cite{11,2,31}. These works
+select the best DVFS setting depending on the slack times. These times happen
+when the processors have to wait for data from other processors to compute their
+task. For example, during the synchronous communications that take place in MPI
+programs, some processors are idle. The optimal DVFS can be selected using
+learning methods. Therefore, in Dhiman, Hao Shen et al.  ~\cite{39,19} used
+machine learning to converge to the suitable DVFS configuration. Their learning
+algorithms take big time to converge when the number of available frequencies is
+high. Also, the communication sections of the MPI program can be used to save
+energy. In~\cite{1}, Lim et al. developed an algorithm that detects the
+communication sections and changes the frequency during these sections
+only. This approach changes the frequency many times because an iteration may
+contain more than one communication section. The domain of analytical modeling
+can also be used for choosing the optimal frequency as in Rauber and
+Rünger~\cite{3}. They developed an analytical mathematical model to determine
+the optimal frequency scaling factor for any number of concurrent tasks. They
+set the slowest task to maximum frequency for maintaining performance.  In this
+paper we compare our algorithm with Rauber and Rünger model~\cite{3}, because
+their model can be used for any number of concurrent tasks for homogeneous
+platforms. The primary contributions of this paper are:
 \begin{enumerate}
 \item Selecting the frequency scaling factor for simultaneously optimizing energy and performance,
    while taking into account the communication time.
 \begin{enumerate}
 \item Selecting the frequency scaling factor for simultaneously optimizing energy and performance,
    while taking into account the communication time.
@@ -232,16 +240,18 @@ maximum and the new frequency as in EQ~(\ref{eq:s}).
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
 \end{equation}
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
 \end{equation}
-The value of the scale $S$ is greater than 1 when changing the frequency to
-any new frequency value~(\emph {P-state}) in governor, the CPU  governor is an interface 
-driver supplied by the operating system kernel  (e.g. Linux) to lowering core's frequency. 
-The scaling factor is equal to 1 when the frequency set is to the maximum frequency.  
-The energy consumption model for parallel homogeneous platform  depends on the scaling factor \emph S. This factor reduces quadratically the dynamic power.  Also, this factor increases the
-static energy linearly because the execution time is increased~\cite{36}.  The
-energy model depending on the frequency scaling factor for homogeneous platform
-for any number of concurrent tasks was developed by Rauber and Rünger~\cite{3}. This model
-considers the two power metrics for measuring the energy of the parallel tasks as
-in EQ~(\ref{eq:energy}):
+The value of the scale $S$ is greater than 1 when changing the frequency to any
+new frequency value~(\emph {P-state}) in governor, the CPU governor is an
+interface driver supplied by the operating system kernel (e.g. Linux) to
+lowering core's frequency.  The scaling factor is equal to 1 when the frequency
+set is to the maximum frequency.  The energy consumption model for parallel
+homogeneous platform depends on the scaling factor \emph S. This factor reduces
+quadratically the dynamic power.  Also, this factor increases the static energy
+linearly because the execution time is increased~\cite{36}.  The energy model
+depending on the frequency scaling factor for homogeneous platform for any
+number of concurrent tasks was developed by Rauber and Rünger~\cite{3}. This
+model considers the two power metrics for measuring the energy of the parallel
+tasks as in EQ~(\ref{eq:energy}):
 
 \begin{equation}
   \label{eq:energy}
 
 \begin{equation}
   \label{eq:energy}
@@ -265,12 +275,13 @@ the time value $T_i$ depends on the new frequency value as in EQ~(\ref{eq:si}).
       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
 \end{equation}
 where $F$ is the number of available frequencies. In this paper we depend on
       = \frac{F_\textit{max}}{F_\textit{new}} \cdot \frac{T_1}{T_i}
 \end{equation}
 where $F$ is the number of available frequencies. In this paper we depend on
-Rauber and Rünger energy model EQ~(\ref{eq:energy}) for two reasons: (1)-this model is used
-for homogeneous platform that we work on in this paper. 2-we compare our
-algorithm with Rauber and Rünger scaling model.  Rauber and Rünger scaling factor that reduce
- energy consumption derived from the EQ~(\ref{eq:energy}). They take the
-derivation for this equation (to be minimized) and set it to zero to produce the
-scaling factor as in EQ~(\ref{eq:sopt}).
+Rauber and Rünger energy model EQ~(\ref{eq:energy}) for two reasons: (1) this
+model is used for homogeneous platform that we work on in this paper, and (2) we
+compare our algorithm with Rauber and Rünger scaling model.  Rauber and Rünger
+scaling factor that reduce energy consumption derived from the
+EQ~(\ref{eq:energy}). They take the derivation for this equation (to be
+minimized) and set it to zero to produce the scaling factor as in
+EQ~(\ref{eq:sopt}).
 \begin{equation}
   \label{eq:sopt}
   S_\textit{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
 \begin{equation}
   \label{eq:sopt}
   S_\textit{opt} = \sqrt[3]{\frac{2}{n} \cdot \frac{P_\textit{dyn}}{P_\textit{static}} \cdot
@@ -765,9 +776,11 @@ In this paper we develop the simultaneous energy-performance algorithm. It is wo
 
 \AG{Right?}
 Computations have been performed on the supercomputer facilities of the
 
 \AG{Right?}
 Computations have been performed on the supercomputer facilities of the
-Mésocentre de calcul de Franche-Comté. As a PhD student , M. Ahmed Fanfakh , would 
-likes to thank the University of Babylon /Iraq for supporting  my scholarship program that allows  me  
-working on this paper.    
+Mésocentre de calcul de Franche-Comté.
+As a PhD student, M. Ahmed Fanfakh, would like to thank the University of
+Babylon (Iraq) for supporting his scholarship program that allows him to work on
+this paper.
+\AG{What about simply: ``[...] for supporting his work.''}
 
 % trigger a \newpage just before the given reference
 % number - used to balance the columns on the last page
 
 % trigger a \newpage just before the given reference
 % number - used to balance the columns on the last page