
Answers to the questions of the
reviewers

We would like to thank the reviewers for taking time to review our paper.
Their remarks were very constructive and allowed us to improve our paper
and clarify some ambiguous points. We took in consideration all the remarks
of the reviewers and modified the paper accordingly. In the following sections,
the reviewers can find our answers to their questions:

1 Questions and remarks of the first reviewer

1. In Sec. 5, I found intriguing the fact of executing Algorithm 1 only after
the first iteration. I agree with you that your model finds the best trade-
off given some data, but what about the variability? We know computer
systems today always show some variability. You are measuring the
computation time and energy consumption for one iteration only. Let’s
suppose something went bad in this first iteration. The scaling factors
will not be the best tradeoff because variability has been ignored. What
would be the solution for that? Consider variability in the model.

Answer: In this paper we have considered that the application exe-
cutes regular iterations over stable computers computing only this ap-
plication. Therefore, we have assumed that the execution times of all
the iterations of the application executed on the same computing node
should be almost the same. For this reason we did not take into con-
sideration the variability of the computer system. Moreover, applying
the frequency scaling algorithm after many iterations would reduce its
impact on the energy consumption especially for applications executing
a relatively low number of iterations.

However, the variability of the computing system can be taken into
consideration in a future work. For example, the proposed algorithm
can be executed twice: after the first iteration the frequencies are scaled
down according to the execution times measured in the first iteration,
then after a fixed number of iterations, the frequencies are adjusted
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according to the execution times measured during the fixed number of
iterations. If the computing power of the system is constantly changing,
it would be interesting to implement a mechanism that detects this
change and adjusts the frequencies according to the variability of the
system.

Taking account of the variability of the system has been added as a
perspective at the end of the paper.

2. Another point is that you mention in the abstract and introduction
that your solution has low overhead, but it is a centralized solution.
Probably it won’t scale when we reach hundreds or thousands of com-
puter nodes: take one of that large machines for example. In this paper
experiments, only 16 and 32 nodes where considered.

Answer: We agree with the reviewer that the algorithm is centralized
and might be a bottleneck if it was applied to an application running
on many thousands of nodes. However, up to 144 nodes in a heteroge-
neous cluster, the overhead of the algorithm was very small, 0.15 ms,
as presented in the simulation results of [2]. We did not execute exper-
iments with more than 32 nodes on Grid’5000 because it does not have
many nodes that allow DVFS operations and have energy measurement
tools.

On the other hand, the scalability of the proposed algorithm can be
improved if we use asynchronous computations or if the algorithm was
distributed in a hierarchical manner where a leader is chosen for each
cluster or a group of nodes to compute their scaled frequencies. Im-
proving the scalability of the algorithm is beyond the scope of this
paper.

3. In Fig 6, you draw lines between the points. Lines here mean nothing
since you are changing the benchmark. I would replot using for instance
a non-stacked bar plot with four colors (one site/16, one site/32, two
sites/16, two sites/32). I believe it would be much easier to compare
and avoid the problem of lines.

Answer: We agree with the reviewer. The curves in Figures 6 and 8
in the paper were replaced by histograms.

4. About the discussion of results shown in Fig 7, one consideration draws
my attention: ”(...) the increase in the number of computing nodes can
increase the communication times and thus produces less energy saving
depending on the benchmarks being executed.”. I agree with you that
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for very large applications, synchronous collective operations are very
costly (take a very simple MPI-Allgather for instance). You say that
on scale this would produce less energy savings, but your arguments
for providing a solution for this was based that today’s supercomputers
are achieving massive scale.

Answer: In Figure 7, the energy consumption of the benchmarks solv-
ing the class D and running on many scenarios are presented. The
number of used nodes varies between 16 and 32 in the scenarios while
the size of the problem is not modified. Therefore, the computations
to communications times ratio is lower when 32 nodes are used instead
of 16. When this ratio is small, it means there are not enough compu-
tations when compared to the communications times and the impact
of scaling down the frequency of the CPU on its energy consumption
is reduced. To solve this problem, the problem should be solved on a
number of nodes adequate to its size. For example, for the NAS bench-
marks, the class E should have been solved on 32 nodes to have a good
computations to communications times ratio.

5. In Sec 6.3, why did you choose to keep 32 processes for the evaluation
with multi-core clusters? How did you configure MPI for the results

Answer: In section 6.3, we wanted to evaluate how much energy can
be saved when applying the proposed algorithm to message passing ap-
plications with iterations running over a grid composed of multi-core
nodes. Therefore, the same experiments as in section 6.2 were con-
ducted on the new multi-core platform. Instead of running one process
per node as in the previous section, 3 or 4 processes were executed
on each multi-core node. The total number of processes, 32 processes,
was not modified in order to fairly compare the single core and the
multi-core versions.

Only the architecture file was modified between the single and the
multi-core architectures. For the single core architecture, the archi-
tecture file contains the name of 32 different nodes. For the multi-core
architecture, the architecture file contains less nodes and for every node
3 or 4 slots (cores) are used. The total number of slots is equal to 32.

6. shown in Fig 8a? Some MPI implementations have an option to use
shared memory when processes share the same processor. I agree with
you in the explanation of the network card utilization, but this shared-
memory optimization is possible (sometimes automatically detected by
MPI if you pin processes to cores).
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Answer: We did not manually pin processes to cores. Since the com-
munication times increased, we think that the shared memory was not
used when two processes, running on the same node, exchange data.

7. In P33, Sec 6.5, you mention that the proposed algorithm outperforms
EDP because the former considers both metrics (time, energy) and
the same time. EDP does also, but using a single metric which you
have defined: energy x execution time. I think this is only a matter of
phrasing.

Answer: We agree with the reviewer, EDP also uses two metrics in the
objective function: energy and delay. The sentence in the paper was
modified to clarify this misunderstanding. The main difference between
our algorithm and the EDP method is the used objective function. For
EDP, the product of energy and delay must be minimized, while for our
algorithm, the difference between the normalized performance and the
normalized energy should be maximized. This new formulation of the
objective function allows our algorithm to select the set of frequencies
that gives the best tradeoff between the energy consumption and the
performance. The objective function of EDP does not give the same
frequencies as our algorithm and thus it is outperformed by our method.
The results of the experiments confirm that the objective function used
by our algorithm is more efficient than the one used by EDP.

8. Other complementary points to consider:

+ P2, L51: there are three dots that looks like an error.

+ P4, L36: also unusual three dots at the end of paragraph.

+ P14 also has three dots in phrase endings. I consider this bad writing
style.

+ Fig 2b is missing the X scale ticks. You could show some examples
of vectors.

+ P23: ”static power is assumed to be equal to 20% of dynamic”.
Provide citation.

+ Fig 6 is referenced in P23, but appears only in P25. Hard to read.

+ Same for Fig 7.

Answer: Answer: We have taken in consideration all these remarks
and the paper was modified accordingly.

9. From the design of experiments, did you consider using replications?
There is no variability metric in your results. Have you run multiple
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times and got the average (execution time and energy consumption)? I
feel that such variability needs to be accounted for, otherwise it is very
hard to affirm anything about measurements.

Answer: Each experiment has been executed many times and the re-
sults presented in the figures are the average values of many executions.
Since we have deployed the same operating system on the booked ma-
chines and we were the only users executing processes on them during
the experiments, no significant variability in the execution time of the
applications was noticed.

10. In summary, I think this is a very interesting work but the experi-
mental evaluation lacks variability measurements, consider larger ex-
periments (1K nodes for instance) to see how everything scales, and
there is no overhead measurements although authors stress that in ab-
stract/introduction.

Answer: For the time being, we do not have the resources nor the time
to evaluate the proposed algorithm over large platforms composed of
more than 1K nodes. However, as said in the perspectives of the paper,
the evaluation of the scalability of the algorithm will be in a conducted
in a future work as soon as we have access to larger resources. We have
discussed the overhead of the algorithm and its complexity in section
6.5 and given in the answer to question 2 some solutions to improve its
scalability and reduce its overhead.

For the variability issue, please refer to the answer to question 1.

2 Questions and remarks of the second reviewer

1. Move the contributions from related work to introduction

2. Why emphasize it is a grid platform? the presentation of related work
follows the logic of heterogeneous CPUs. Grid is only a type of platform
with heterogeneous CPUs.

Answer: We agree with the reviewer that a grid is a type of hetero-
geneous architecture and the proposed algorithm can also work on any
heterogeneous architecture.

In [2], we have proposed a frequency selection algorithm for distributed
applications running on heterogeneous clusters, while in this work, the
proposed algorithm was adapted to the grid architecture which is com-
posed of homogeneous clusters interconnected by a wide area network
which is slower than the local network in each cluster.
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3. Define what iterative message passing applications are and give exem-
plar applications of them targeted by this method.

Answer: In order to clarify things, we have replaced in the paper the
sentence “the iterative message passing applications” with “the mes-
sage passing applications with iterations”. Therefore, the proposed al-
gorithm can be applied to any application that executes the same block
of instructions many times and it is not limited to iterative methods
that repeat the same block of instructions until convergence.

Many problems are solved by methods with iterations such as solving
a linear system of equations with Jacobi and Gauss-Seidel methods,
Image processing with methods that apply the same instructions for
each pixel or block of pixels, etc.

4. Figure 1 is not clearly explained. Where is the slack time in figure 1
and why slack time =0 for task 1?

Answer: Figure 1 was redrawn, the white space before the barrier is
the slack time. Slack times occur when a node has to wait for another
node to finish its computation to synchronously communicate with it.
In Figure 1, task 1 was assumed to be the slowest task. All the other
tasks will finish their computations before the slowest task and wait
until it finishes its computation before being able to synchronously
communicate with it. This waiting time is the slack time and since the
slowest task do not have to wait for the other tasks it has almost no
slack time.

5. Define the parameters in eq. 1.

Answer: Fmax and Fnew have been defined as follows in the paper:
“Fmax is the maximum frequency before applying any DVFS and Fnew

is the new frequency after applying DVFS”.

6. Eq. 2: are you assuming each cluster has the same number of nodes?

Answer: No, each cluster can have a different number of nodes. There-
fore, in the paper, M , the number of nodes in a cluster, was replaced
by Mi, the number of nodes in cluster i, in all the equations.

7. Eq.2 implicitly assumes that there is no overlapping between compu-
tation and communication. Is it reasonable?

Answer: In this paper, only message passing applications with syn-
chronous and blocking communications were considered. In such ap-
plications, there is no overlapping between computations and commu-
nications on a node.
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Asynchronous applications are beyond the scope of this paper and will
be considered in a future work.

8. Eq. 2 is not clear:

(a) How to define and determine the slowest cluster h? the one before
scaling or after scaling?

Answer: The slowest node h is the node which takes the maxi-
mum execution time to execute an iteration before scaling down
its frequency. The previous sentence has been added to the paper.

(b) What is the communication time without slack time?

Answer: There is no synchronous communications with zero
slack times, but if a node sends a message to another node who
is already waiting for that message. The latter will acknowledge
the reception of the message from the sender without any delay.
On the other hand, if the receiving node is still computing the
sender has to wait for it to finish its computation to acknowledge
the reception of the message. This time is called the slack time.

(c) In equation, min operation is used to get the communication time,
but in text, it says to use the slowest communication time, which
should use the max operation then.

Answer: We agree with the reviewer and the sentence ”the slow-
est communication time” has been changed to ”the communica-
tion time of the slowest node” in the paper.

9. Discuss the difference between eq. 2 and the prediction model in refer-
ences [1] and [2].

Answer: The prediction models in [1] and [2] are for homogeneous
and heterogeneous clusters respectively, while the model in Equation
2 is adapted for grids. We have adapted the prediction models to the
used architecture. Each architecture has its own characteristics. For
example, in a homogeneous cluster all the nodes have the same specifi-
cations and only one scaling factor is computed by the algorithm to all
the nodes of the cluster. On the other hand, in a heterogeneous cluster,
the nodes may have different specifications and a scaling factor should
be computed to each node. The prediction models of a heterogeneous
cluster can be used for a homogeneous cluster. In the same the models
in this paper take more characteristics into considerations such as dif-
ferent networks to be adapted for grids and they can also be applied to
a heterogeneous cluster. Therefore, the models presented in this paper
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are more complete than those presented in [1] and [2] and take more
characteristics into consideration.

10. Eq. 10: Can the authors comment on the energy consumed by com-
munications?

Answer: During communications, the CPU only consumes the static
power power and during computations it consumes both dynamic and
static power. For more information the reviewer can refer to [3].

11. This work assume homogeneous cpu in one cluster. Line 55 says: even
if the distributed message passing iterative application is load balanced,
the computation time of each cpu j in cluster i may be different Why?

Answer: In a homogeneous cluster executing a load balanced dis-
tributed application, the computation time of each node might be
slightly different than the others due to some delay caused by the sched-
uler of the operating system of the node.

12. Comment why the applications in NAS parallel benchmark are itera-
tive application? These applications are normally run in one cluster.
Describe in more detail how they are run across multiple clusters.

Answer: The sentence “iterative applications” was replaced by “ap-
plications with iterations” because the proposed algorithm can be ap-
plied to any application that executes the same block of instructions
many times and it is not limited to iterative methods that terminate
when they converge. The NAS parallel benchmarks are application
with iterations because they iterate the same block of instructions un-
til convergence or for fixed number of iterations. These benchmarks
can be executed on any distributed memory platform such as clusters
or grids with no required modifications. Since, we have deployed the
same operating system on all the nodes, we just compile the source
on one node and then copy the executable program on all the nodes.
The application can then be executed with an “mpirun” command that
takes three arguments:

• the name of the application to execute

• the number of processes required to execute the application

• the architecture file that contains the names of the nodes that will
execute the application. They could be from different clusters.

13. Broken sentence in line 28 on page 12.

Answer: The sentence was corrected.
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14. Why Told is computed using eq. 12, which applies MAX over compu-
tation time and communication time, while in Tnew, max and min op-
erations are applied over computation and communication separately?

Answer: We agree with the reviewer, Told is the maximum execution
time of the application before scaling the frequency and it is computed
as in Tnew equation without scaling factors. So, we have changed the
Told in the paper as as follows:

Told = max
i=1,2,...,N

j=1,2,...,Mi

(Tcp ij) + min
i=1,2,...,N

(Tcmhj) (1)

15. Line 55 on page 16 is to define the slack time, which should be intro-
duced at the beginning of the paper, such as in figure 1.

Answer: We agree with the reviewer and the slack time is now pre-
sented at the beginning of the paper.

16. Authors comment whether (and how) the proposed methods can be
applied/extended to other programming models and/or platform, such
as mapreduce, heterogeneous cluster with CPU+GPU.

Answer: The proposed method can only be applied to parallel models
with iterations and with or without message passing. If only a few
map and reduce operations are executed in the application and these
operations are not iterative, the proposed algorithm cannot be adapted
to that type of applications. On the other hand, if the map or reduce
operations are iterative, the proposed algorithm can be applied when
executing these operations. Finally, if in the application, the same
map and reduce operations are executed many times iteratively, the
proposed algorithm can then be applied to the whole application while
considering that an iteration consists of a map operation followed by a
reduce operation.

The proposed method with some adaptations can be applied to appli-
cations with iterations running on heterogeneous platforms composed
of GPUs and CPUs because modern GPUs like CPUs allow the use of
DVFS.

3 Questions and remarks of the third reviewer

1. Suggest the authors to use much larger size of nodes, instead of on 16
nodes, distributed on three clusters, to see the scalability of the energy
saving
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Answer: The experiments were not only conducted over 16 nodes, but
they were also executed over 32 nodes distributed over three clusters.
In [2] the algorithm was evaluated on a simulated heterogeneous cluster
composed of up to 144 nodes. The overhead of the algorithm was very
small, just 0.15 ms.

The experiments were not conducted on more than 32 nodes of Grid’5000
because it does not have many nodes that allow DVFS operations and
have energy measurement tools. We agree with the reviewer that ex-
periments using much more nodes should be conducted to evaluate the
scalability of the proposed algorithm and when we will have access to
such platforms, we will evaluate the proposed method over a larger
number of nodes.

2. The energy saving is actually calculated by the quantitative formula
instead of the real measurements. Can you have any discussions on the
real measurements?

Answer: This paper does not focus on measuring the energy con-
sumption of CPUs in a grid. It presents models to predict the energy
consumption and the performance of an application with iterations run-
ning on a grid. These models use the given dynamic and static powers
to predict the energy consumption of each CPU with different scaling
factors. Moreover, since we do not have physical access to the nodes of
the grid which are geographically distributed on many sites in France,
we cannot use hardware tools to measure the consumption of CPUs.
Therefore, we used Grid’5000’s tool which measures the overall power
consumption of a node in real-time. These values were used to deduce
the dynamic power of the node when computing with the maximum
frequency.

As a future work, it would be interesting to compare the accuracy of the
results of the proposed energy model to the values given by instruments
that measure the energy consumptions of CPUs during the execution
time, as in [4].

3. The overhead is not measured, can you present something on this as
well to demonstrate what the authors claimed ”has a small overhead
and works without training or profiling”?

Answer: In the comparison section 6.5, we have presented the execu-
tion time of the algorithm when it is executed over 32 nodes from three
clusters and located in two different sites. It takes on average 0.01 ms.
In [2] the algorithm was evaluated on a simulated heterogeneous cluster
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composed of up to 144 nodes. The overhead of the algorithm was just
0.15 ms.

The algorithm works online without profiling means it only uses the
measured communication and computation times during the run-time
and do not require to profile the application before run-time. Some
methods use profilers before executing the application to gather a lot
of information about the application such as computations to commu-
nication ratios and dependencies between tasks. The gathered infor-
mation is used to scale the frequency of each node before executing the
application.

The algorithm works without training because it does not require the
partial or the total execution of the application before run-time. In-
deed, some applications run parts of the application while using various
frequencies to measure in advance their energy consumption. Then,
using these values they select the the frequency of each node before
executing the application.
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