]> AND Private Git Repository - mpi-energy2.git/blob - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
5dc876cb679388874b8f85e4411257064779fcda
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
1 \documentclass[3p,times]{elsarticle-1}
2 \usepackage{ecrc}
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11 \usepackage{url}
12 \usepackage{multirow}
13 \DeclareUrlCommand\email{\urlstyle{same}}
14
15 \usepackage[autolanguage,np]{numprint}
16 \AtBeginDocument{%
17   \renewcommand*\npunitcommand[1]{\text{#1}}
18   \npthousandthpartsep{}}
19
20 \usepackage{xspace}
21 \usepackage[textsize=footnotesize]{todonotes}
22 \newcommand{\AG}[2][inline]{%
23   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{%
25   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
26
27 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
28
29 %% used to put some subscripts lower, and make them more legible
30 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
31
32 \newcommand{\CL}{\Xsub{C}{L}}
33 \newcommand{\Dist}{\mathit{Dist}}
34 \newcommand{\EdNew}{\Xsub{E}{dNew}}
35 \newcommand{\Eind}{\Xsub{E}{ind}}
36 \newcommand{\Enorm}{\Xsub{E}{Norm}}
37 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
38 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
39 \newcommand{\Es}{\Xsub{E}{S}}
40 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
41 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
42 \newcommand{\Fnew}{\Xsub{F}{new}}
43 \newcommand{\Ileak}{\Xsub{I}{leak}}
44 \newcommand{\Kdesign}{\Xsub{K}{design}}
45 \newcommand{\MaxDist}{\mathit{Max}\Dist}
46 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
47 \newcommand{\Ntrans}{\Xsub{N}{trans}}
48 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
49 \newcommand{\PdNew}{\Xsub{P}{dNew}}
50 \newcommand{\PdOld}{\Xsub{P}{dOld}}
51 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
52 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
53 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
54 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
55 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
56 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
57 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
58 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
59 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
60 \newcommand{\Tnew}{\Xsub{T}{New}}
61 \newcommand{\Told}{\Xsub{T}{Old}}
62
63
64 %% The ecrc package defines commands needed for running heads and logos.
65 %% For running heads, you can set the journal name, the volume, the starting page and the authors
66
67 %% set the volume if you know. Otherwise `00'
68 \volume{00}
69
70 %% set the starting page if not 1
71 \firstpage{1}
72
73 %% Give the name of the journal
74 \journalname{Procedia Computer Science}
75
76 %% Give the author list to appear in the running head
77 %% Example \runauth{C.V. Radhakrishnan et al.}
78 \runauth{}
79
80 %% The choice of journal logo is determined by the \jid and \jnltitlelogo commands.
81 %% A user-supplied logo with the name <\jid>logo.pdf will be inserted if present.
82 %% e.g. if \jid{yspmi} the system will look for a file yspmilogo.pdf
83 %% Otherwise the content of \jnltitlelogo will be set between horizontal lines as a default logo
84
85 %% Give the abbreviation of the Journal.
86 \jid{procs}
87
88 %% Give a short journal name for the dummy logo (if needed)
89 \jnltitlelogo{Procedia Computer Science}
90
91 %% Hereafter the template follows `elsarticle'.
92 %% For more details see the existing template files elsarticle-template-harv.tex and elsarticle-template-num.tex.
93
94 %% Elsevier CRC generally uses a numbered reference style
95 %% For this, the conventions of elsarticle-template-num.tex should be followed (included below)
96 %% If using BibTeX, use the style file elsarticle-num.bst
97
98 %% End of ecrc-specific commands
99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
100
101 %% The amssymb package provides various useful mathematical symbols
102 \usepackage{amssymb}
103 %% The amsthm package provides extended theorem environments
104 %% \usepackage{amsthm}
105
106 %% The lineno packages adds line numbers. Start line numbering with
107 %% \begin{linenumbers}, end it with \end{linenumbers}. Or switch it on
108 %% for the whole article with \linenumbers after \end{frontmatter}.
109 %% \usepackage{lineno}
110
111 %% natbib.sty is loaded by default. However, natbib options can be
112 %% provided with \biboptions{...} command. Following options are
113 %% valid:
114
115 %%   round  -  round parentheses are used (default)
116 %%   square -  square brackets are used   [option]
117 %%   curly  -  curly braces are used      {option}
118 %%   angle  -  angle brackets are used    <option>
119 %%   semicolon  -  multiple citations separated by semi-colon
120 %%   colon  - same as semicolon, an earlier confusion
121 %%   comma  -  separated by comma
122 %%   numbers-  selects numerical citations
123 %%   super  -  numerical citations as superscripts
124 %%   sort   -  sorts multiple citations according to order in ref. list
125 %%   sort&compress   -  like sort, but also compresses numerical citations
126 %%   compress - compresses without sorting
127 %%
128 %% \biboptions{comma,round}
129
130 % \biboptions{}
131
132 % if you have landscape tables
133 \usepackage[figuresright]{rotating}
134
135 % put your own definitions here:
136 %   \newcommand{\cZ}{\cal{Z}}
137 %   \newtheorem{def}{Definition}[section]
138 %   ...
139
140 % add words to TeX's hyphenation exception list
141 %\hyphenation{author another created financial paper re-commend-ed Post-Script}
142
143 % declarations for front matter
144
145 \begin{document}
146
147 \begin{frontmatter}
148
149 %% Title, authors and addresses
150
151 %% use the tnoteref command within \title for footnotes;
152 %% use the tnotetext command for the associated footnote;
153 %% use the fnref command within \author or \address for footnotes;
154 %% use the fntext command for the associated footnote;
155 %% use the corref command within \author for corresponding author footnotes;
156 %% use the cortext command for the associated footnote;
157 %% use the ead command for the email address,
158 %% and the form \ead[url] for the home page:
159 %%
160 %% \title{Title\tnoteref{label1}}
161 %% \tnotetext[label1]{}
162 %% \author{Name\corref{cor1}\fnref{label2}}
163 %% \ead{email address}
164 %% \ead[url]{home page}
165 %% \fntext[label2]{}
166 %% \cortext[cor1]{}
167 %% \address{Address\fnref{label3}}
168 %% \fntext[label3]{}
169
170 \dochead{}
171 %% Use \dochead if there is an article header, e.g. \dochead{Short communication}
172 \title{Energy Consumption Reduction with DVFS for Message Passing \\
173        Iterative Applications on Grid Architecture} 
174   
175
176 %% use optional labels to link authors explicitly to addresses:
177 %% \author[label1,label2]{<author name>}
178 %% \address[label1]{<address>}
179 %% \address[label2]{<address>}
180
181 \author{Ahmed Fanfakh,
182         Jean-Claude Charr,
183         Raphaël Couturier,
184         and Arnaud Giersch}
185
186 \address{FEMTO-ST Institute, University of Franche-Comté\\
187     IUT de Belfort-Montbéliard,
188     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
189     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
190     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
191     Email: \email{{ahmed.fanfakh_badri_muslim,jean-claude.charr,raphael.couturier,arnaud.giersch}@univ-fcomte.fr}
192    }
193
194 \begin{abstract}
195   In recent years, green computing topic  has  become an important topic 
196   in the supercomputing research domain. However, the 
197   computing platforms are still  consuming more and
198 more energy due to the increasing number of nodes composing
199 them. To minimize the operating costs of these platforms many
200 techniques have been used. Dynamic voltage and frequency
201 scaling (DVFS) is one of them. It can be used to reduce the power consumption of the CPU 
202   while computing, by lowering its frequency. However, lowering the frequency of 
203   a CPU may increase the execution time of an application running on that 
204   processor. Therefore, the frequency that gives the best trade-off between 
205   the energy consumption and the performance of an application must be selected. 
206   In this paper, a new online frequency selecting algorithm for grids, composed of heterogeneous clusters, is presented.  
207   It selects the frequencies and tries to give the best
208   trade-off between energy saving and performance degradation, for each node
209   computing the message passing iterative application. 
210   The algorithm has a small
211   overhead and works without training or profiling. It uses a new energy model
212   for message passing iterative applications running on a  grid. 
213   The proposed algorithm is evaluated on a real grid, the grid'5000 platform, while
214   running the NAS parallel benchmarks.  The experiments show that it reduces the
215   energy consumption on average by \np[\%]{30} while  the performance  is only degraded
216   on average by \np[\%]{3.2}. Finally, the algorithm is 
217   compared to an existing method. The comparison results show that it outperforms the
218   latter in terms of energy consumption reduction and performance.
219 \end{abstract}
220
221
222 \begin{keyword}
223 \textcolor{blue}{
224 DVFS \sep heterogeneous grid \sep energy consumption  \sep performance prediction  \sep energy and performance trade-off  \sep frequencies selecting algorithm }
225
226 %% keywords here, in the form: keyword \sep keyword
227
228 %% MSC codes here, in the form: \MSC code \sep code
229 %% or \MSC[2008] code \sep code (2000 is the default)
230
231 \end{keyword}
232
233 \end{frontmatter}
234
235
236
237 \section{Introduction}
238 \label{sec.intro}
239 The need for more computing power is continually increasing. To partially
240 satisfy this need, most supercomputers constructors just put more computing
241 nodes in their platform. The resulting platforms may achieve higher floating
242 point operations per second (FLOPS), but the energy consumption and the heat
243 dissipation are also increased.  As an example, the Chinese supercomputer
244 Tianhe-2 had the highest FLOPS in June 2015  according to the Top500 list
245 \cite{TOP500_Supercomputers_Sites}.  However, it was also the most power hungry
246 platform with its over 3 million cores consuming around 17.8 megawatts.
247 Moreover, according to the U.S.  annual energy outlook 2015
248 \cite{U.S_Annual.Energy.Outlook.2015}, the price of energy for 1 megawatt-hour
249 was approximately equal to \$70.  Therefore, the price of the energy consumed by
250 the Tianhe-2 platform is approximately more than \$10 million each year.  The
251 computing platforms must be more energy efficient and offer the highest number
252 of FLOPS per watt possible, such as the Shoubu-ExaScaler from RIKEN
253 which became the top of the Green500 list in June 2015 \cite{Green500_List}.
254 This heterogeneous platform executes more than 7 GFLOPS per watt while consuming
255 50.32 kilowatts.
256
257 Besides platform improvements, there are many software and hardware techniques
258 to lower the energy consumption of these platforms, such as scheduling, DVFS,
259 \dots{} DVFS is a widely used process to reduce the energy consumption of a
260 processor by lowering its frequency
261 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
262 the number of FLOPS executed by the processor which may increase the execution
263 time of the application running over that processor.  Therefore, researchers use
264 different optimization strategies to select the frequency that gives the best
265 trade-off between the energy reduction and performance degradation ratio. In
266 \cite{Our_first_paper} and \cite{pdsec2015} , a frequencies selecting algorithm was proposed to reduce
267 the energy consumption of message passing iterative applications running over
268 homogeneous  and heterogeneous clusters respectively.  
269 The results of the experiments showed significant energy
270 consumption reductions. All the experimental results were conducted over 
271 Simgrid simulator \cite{SimGrid}, which offers easy tools to create a homogeneous and heterogeneous platforms and run message passing parallel applications over them. In this paper, a new frequencies selecting algorithm,
272 adapted to  grid platforms composed of heterogeneous clusters, is presented. It is applied to the NAS parallel benchmarks and evaluated over a real testbed, 
273 the grid'5000 platform \cite{grid5000}. It selects  for a grid platform running a message passing iterative
274 application the vector of
275 frequencies  that simultaneously tries to offer the maximum energy reduction and
276 minimum performance degradation ratios. The algorithm has a very small overhead,
277 works online and does not need any training or profiling.
278
279
280 This paper is organized as follows: Section~\ref{sec.relwork} presents some
281 related works from other authors.  Section~\ref{sec.exe} describes how the
282 execution time of message passing programs can be predicted.  It also presents
283 an energy model that predicts the energy consumption of an application running
284 over a grid platform. Section~\ref{sec.compet} presents the
285 energy-performance objective function that maximizes the reduction of energy
286 consumption while minimizing the degradation of the program's performance.
287 Section~\ref{sec.optim} details the proposed frequencies selecting algorithm.
288 Section~\ref{sec.expe} presents the results of applying the algorithm on the 
289 NAS parallel benchmarks and executing them on the grid'5000 testbed. 
290 %It shows the results of running different scenarios using multi-cores and one core per node and comparing them. 
291 It also evaluates the algorithm over three different power scenarios. Moreover, it shows the
292 comparison results between the proposed method and an existing method.  Finally,
293 in Section~\ref{sec.concl} the paper ends with a summary and some future works.
294
295 \section{Related works}
296 \label{sec.relwork}
297
298 DVFS is a technique used in modern processors to scale down both the voltage and
299 the frequency of the CPU while computing, in order to reduce the energy
300 consumption of the processor. DVFS is also allowed in GPUs to achieve the same
301 goal. Reducing the frequency of a processor lowers its number of FLOPS and may
302 degrade the performance of the application running on that processor, especially
303 if it is compute bound. Therefore selecting the appropriate frequency for a
304 processor to satisfy some objectives, while taking into account all the
305 constraints, is not a trivial operation.  Many researchers used different
306 strategies to tackle this problem. Some of them developed online methods that
307 compute the new frequency while executing the application, such
308 as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
309 Others used offline methods that may need to run the application and profile
310 it before selecting the new frequency, such
311 as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
312 The methods could be heuristics, exact or brute force methods that satisfy
313 varied objectives such as energy reduction or performance. They also could be
314 adapted to the execution's environment and the type of the application such as
315 sequential, parallel or distributed architecture, homogeneous or heterogeneous
316 platform, synchronous or asynchronous application, \dots{}
317
318 In this paper, we are interested in reducing energy for message passing
319 iterative synchronous applications running over heterogeneous grid platforms.  Some
320 works have already been done for such platforms and they can be classified into
321 two types of heterogeneous platforms:
322 \begin{itemize}
323 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
324 \item the platform is only composed of heterogeneous CPUs.
325 \end{itemize}
326
327 For the first type of platform, the computing intensive parallel tasks are
328 executed on the GPUs and the rest are executed on the CPUs.  Luley et
329 al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
330 heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
331 goal was to maximize the energy efficiency of the platform during computation by
332 maximizing the number of FLOPS per watt generated.
333 In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
334 al. developed a scheduling algorithm that distributes workloads proportional to
335 the computing power of the nodes which could be a GPU or a CPU. All the tasks
336 must be completed at the same time.  In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
337 Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
338 DVFS gave better energy and performance efficiency than other clusters only
339 composed of CPUs.
340
341 The work presented in this paper concerns the second type of platform, with
342 heterogeneous CPUs.  Many methods were conceived to reduce the energy
343 consumption of this type of platform.  Naveen et
344 al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
345 minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
346 the sum of slack times that happen during synchronous communications) by
347 dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.
348 Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an
349 algorithm that divides the executed tasks into two types: the critical and non
350 critical tasks. The algorithm scales down the frequency of non critical tasks
351 proportionally to their slack and communication times while limiting the
352 performance degradation percentage to less than \np[\%]{10}.
353 In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
354 heterogeneous cluster composed of two types of Intel and AMD processors. They
355 use a gradient method to predict the impact of DVFS operations on performance.
356 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
357 \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
358 frequencies for a specified heterogeneous cluster are selected offline using
359 some heuristic.  Chen et
360 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
361 programming approach to minimize the power consumption of heterogeneous servers
362 while respecting given time constraints.  This approach had considerable
363 overhead.  In contrast to the above described papers, this paper presents the
364 following contributions :
365 \begin{enumerate}
366 \item two new energy and performance models for message passing iterative
367   synchronous applications running over a heterogeneous grid platform. Both models
368   take into account communication and slack times. The models can predict the
369   required energy and the execution time of the application.
370
371 \item a new online frequency selecting algorithm for heterogeneous grid
372   platforms. The algorithm has a very small overhead and does not need any
373   training or profiling. It uses a new optimization function which
374   simultaneously maximizes the performance and minimizes the energy consumption
375   of a message passing iterative synchronous application.
376
377 \end{enumerate}
378
379
380
381 \section{The performance and energy consumption measurements on heterogeneous grid architecture}
382 \label{sec.exe}
383
384 \subsection{The execution time of message passing distributed iterative
385   applications on a heterogeneous platform}
386
387 In this paper, we are interested in reducing the energy consumption of message
388 passing distributed iterative synchronous applications running over
389 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
390 heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth 
391 and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
392
393 \begin{figure}[!t]
394   \centering
395   \includegraphics[scale=0.6]{fig/commtasks}
396   \caption{Parallel tasks on a heterogeneous platform}
397   \label{fig:heter}
398 \end{figure}
399
400 The overall execution time of a distributed iterative synchronous application 
401 over a heterogeneous grid consists of the sum of the computation time and 
402 the communication time for every iteration on a node. However, due to the
403 heterogeneous computation power of the computing clusters, slack times may occur
404 when fast nodes have to wait, during synchronous communications, for the slower
405 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
406 overall execution time of the program is the execution time of the slowest task 
407 which has the highest computation time and no slack time.
408
409 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
410 modern processors, that reduces the energy consumption of a CPU by scaling
411 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
412 and consequently its computing power, the execution time of a program running
413 over that scaled down processor may increase, especially if the program is
414 compute bound.  The frequency reduction process can be  expressed by the scaling
415 factor S which is the ratio between  the maximum and the new frequency of a CPU
416 as in (\ref{eq:s}).
417 \begin{equation}
418   \label{eq:s}
419   S = \frac{\Fmax}{\Fnew}
420 \end{equation}
421 The execution time of a compute bound sequential program is linearly
422 proportional to the frequency scaling factor $S$.  On the other hand, message
423 passing distributed applications consist of two parts: computation and
424 communication.  The execution time of the computation part is linearly
425 proportional to the frequency scaling factor $S$ but the communication time is
426 not affected by the scaling factor because the processors involved remain idle
427 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
428 communication time for a task is the summation of periods of time that begin
429 with an MPI call for sending or receiving a message until the message is
430 synchronously sent or received.
431
432 Since in a heterogeneous grid each cluster has different characteristics,
433 especially different frequency gears, when applying DVFS operations on the nodes 
434 of these clusters, they may get different scaling factors represented by a scaling vector:
435 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
436 be able to predict the execution time of message passing synchronous iterative
437 applications running over a heterogeneous grid, for different vectors of
438 scaling factors, the communication time and the computation time for all the
439 tasks must be measured during the first iteration before applying any DVFS
440 operation. Then the execution time for one iteration of the application with any
441 vector of scaling factors can be predicted using (\ref{eq:perf}).
442 \begin{equation}
443   \label{eq:perf}
444   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij}) 
445   +\mathop{\min_{j=1,\dots,M}}  (\Tcm[hj])
446 \end{equation}
447
448 where $N$ is the number of  clusters in the grid, $M$ is the number of  nodes in
449 each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
450 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
451 first  iteration. The model computes the maximum computation time with scaling factor 
452 from each node added to the communication time of the slowest node in the slowest cluster $h$.
453 It means only the communication time without any slack time is taken into account.  
454 Therefore, the execution time of the iterative application is equal to
455 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
456 number of iterations of that application.
457
458 This prediction model is developed from the model to predict the execution time
459 of message passing distributed applications for homogeneous and heterogeneous clusters
460 ~\cite{Our_first_paper,pdsec2015}.  The execution time prediction model is
461 used in the method to optimize both the energy consumption and the performance
462 of iterative methods, which is presented in the following sections.
463
464
465 \subsection{Energy model for heterogeneous grid platform}
466
467 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
468   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
469   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
470 a processor into two power metrics: the static and the dynamic power.  While the
471 first one is consumed as long as the computing unit is turned on, the latter is
472 only consumed during computation times.  The dynamic power $\Pd$ is related to
473 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
474 and operational frequency $F$, as shown in (\ref{eq:pd}).
475 \begin{equation}
476   \label{eq:pd}
477   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
478 \end{equation}
479 The static power $\Ps$ captures the leakage power as follows:
480 \begin{equation}
481   \label{eq:ps}
482    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
483 \end{equation}
484 where V is the supply voltage, $\Ntrans$ is the number of transistors,
485 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
486 technology dependent parameter.  The energy consumed by an individual processor
487 to execute a given program can be computed as:
488 \begin{equation}
489   \label{eq:eind}
490   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
491 \end{equation}
492 where $T$ is the execution time of the program, $\Tcp$ is the computation
493 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
494 communication and no slack time.
495
496 The main objective of DVFS operation is to reduce the overall energy
497 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
498 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
499 F$ with some constant $\beta$.~This equation is used to study the change of the
500 dynamic voltage with respect to various frequency values
501 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
502 frequency can be expressed by the scaling factor $S$ which is the ratio between
503 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
504 power schemes supplied by the operating system's kernel to lower a core's
505 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
506 follows:
507 \begin{equation}
508   \label{eq:fnew}
509    \Fnew = S^{-1} \cdot \Fmax
510 \end{equation}
511 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
512 equation for dynamic power consumption:
513 \begin{equation}
514   \label{eq:pdnew}
515    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 
516     = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
517 \end{equation}
518 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
519 new frequency and the maximum frequency respectively.
520
521 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
522 $S^{-3}$ when reducing the frequency by a factor of
523 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
524 proportional to the frequency of a CPU, the computation time is increased
525 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
526 by the new time of computation and is given by the following equation:
527 \begin{equation}
528   \label{eq:Edyn}
529    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
530 \end{equation}
531 The static power is related to the power leakage of the CPU and is consumed
532 during computation and even when idle. As
533 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
534 the static power of a processor is considered as constant during idle and
535 computation periods, and for all its available frequencies.  The static energy
536 is the static power multiplied by the execution time of the program.  According
537 to the execution time model in (\ref{eq:perf}), the execution time of the
538 program is the sum of the computation and the communication times. The
539 computation time is linearly related to the frequency scaling factor, while this
540 scaling factor does not affect the communication time.  The static energy of a
541 processor after scaling its frequency is computed as follows:
542 \begin{equation}
543   \label{eq:Estatic}
544   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
545 \end{equation}
546
547 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
548 different dynamic and static powers from the nodes of the other clusters, 
549 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
550 message passing iterative application is load balanced, the computation time of each CPU $j$ 
551 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
552 computed in order to decrease the overall energy consumption of the application
553 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
554 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
555 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
556 communication times. While the dynamic energy is computed according to the
557 frequency scaling factor and the dynamic power of each node as in
558 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
559 of one iteration multiplied by the static power of each processor.  The overall
560 energy consumption of a message passing distributed application executed over a
561 heterogeneous grid platform during one iteration is the summation of all dynamic and
562 static energies for $M$ processors in $N$ clusters.  It is computed as follows:
563 \begin{equation}
564   \label{eq:energy}
565  E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
566  \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot 
567   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij}) 
568   +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
569 \end{equation}
570
571 Reducing the frequencies of the processors according to the vector of scaling
572 factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
573 and thus, increase the static energy because the execution time is
574 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
575 for the iterative application can be measured by measuring the energy
576 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
577 of iterations of that application.
578
579 \section{Optimization of both energy consumption and performance}
580 \label{sec.compet}
581
582 Using the lowest frequency for each processor does not necessarily give the most
583 energy efficient execution of an application. Indeed, even though the dynamic
584 power is reduced while scaling down the frequency of a processor, its
585 computation power is proportionally decreased. Hence, the execution time might
586 be drastically increased and during that time, dynamic and static powers are
587 being consumed.  Therefore, it might cancel any gains achieved by scaling down
588 the frequency of all nodes to the minimum and the overall energy consumption of
589 the application might not be the optimal one.  It is not trivial to select the
590 appropriate frequency scaling factor for each processor while considering the
591 characteristics of each processor (computation power, range of frequencies,
592 dynamic and static powers) and the task executed (computation/communication
593 ratio). The aim being to reduce the overall energy consumption and to avoid
594 increasing significantly the execution time.
595 In our previous
596 works, \cite{Our_first_paper} and \cite{pdsec2015}, two methods that select the optimal
597 frequency scaling factors for a homogeneous and a heterogeneous cluster respectively, were proposed. 
598 Both methods selects the frequencies that gives the best tradeoff between 
599 energy consumption reduction and performance for  message passing
600 iterative synchronous applications.   In this work we
601 are interested in grids that are composed of heterogeneous clusters were the nodes have different characteristics such  as  dynamic power, static power, computation power, frequencies range, network latency and bandwidth. 
602 Due to the
603 heterogeneity of the processors, a vector of scaling factors should be selected
604 and it must give the best trade-off between energy consumption and performance.
605
606 The relation between the energy consumption and the execution time for an
607 application is complex and nonlinear, Thus, unlike the relation between the
608 execution time and the scaling factor, the relation between the energy and the
609 frequency scaling factors is nonlinear, for more details refer
610 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
611 are not measured using the same metric.  To solve this problem, the execution
612 time is normalized by computing the ratio between the new execution time (after
613 scaling down the frequencies of some processors) and the initial one (with
614 maximum frequency for all nodes) as follows:
615 \begin{equation}
616   \label{eq:pnorm}
617   \Pnorm = \frac{\Tnew}{\Told}                 
618 \end{equation}
619
620
621 Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
622 \begin{equation}
623   \label{eq:told}
624    \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])             
625 \end{equation}
626 In the same way, the energy is normalized by computing the ratio between the
627 consumed energy while scaling down the frequency and the consumed energy with
628 maximum frequency for all  nodes:
629 \begin{equation}
630   \label{eq:enorm}
631   \Enorm = \frac{\Ereduced}{\Eoriginal} 
632 \end{equation}
633
634 Where $\Ereduced$  is computed using (\ref{eq:energy}) and $\Eoriginal$ is 
635 computed as in (\ref{eq:eorginal}).
636
637
638 \begin{equation}
639   \label{eq:eorginal}
640     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot  \Tcp[ij])  + 
641      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)       
642 \end{equation}
643
644 While the main goal is to optimize the energy and execution time at the same
645 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
646 According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
647 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
648 and the execution time simultaneously.  But the main objective is to produce
649 maximum energy reduction with minimum execution time reduction.
650
651 This problem can be solved by making the optimization process for energy and
652 execution time follow the same evolution according to the vector of scaling factors
653 $(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
654 normalized execution time is inverted which gives the normalized performance
655 equation, as follows:
656 \begin{equation}
657   \label{eq:pnorm_inv}
658   \Pnorm = \frac{\Told}{\Tnew}          
659 \end{equation}
660
661 \begin{figure}
662   \centering
663   \subfloat[Homogeneous cluster]{%
664     \includegraphics[width=.4\textwidth]{fig/homo}\label{fig:r1}} \hspace{2cm}%
665   \subfloat[Heterogeneous grid]{%
666     \includegraphics[width=.4\textwidth]{fig/heter}\label{fig:r2}}
667   \label{fig:rel}
668   \caption{The energy and performance relation}
669 \end{figure}
670
671 Then, the objective function can be modeled in order to find the maximum
672 distance between the energy curve (\ref{eq:enorm}) and the performance curve
673 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
674 represents the minimum energy consumption with minimum execution time (maximum
675 performance) at the same time, see Figure~\ref{fig:r1} or
676 Figure~\ref{fig:r2}. Then the objective function has the following form:
677 \begin{equation}
678   \label{eq:max}
679   \MaxDist =
680 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
681       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
682        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
683 \end{equation}
684 where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
685 $F$ is the number of available frequencies for each node.  Then, the optimal set 
686 of scaling factors that satisfies (\ref{eq:max}) can be selected.  
687 The objective function can work with any energy model or any power 
688 values for each node (static and dynamic powers). However, the most important 
689 energy reduction gain can be achieved when the energy curve has a convex form as shown 
690 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
691
692 \section{The scaling factors selection algorithm for  grids }
693 \label{sec.optim}
694
695 \begin{algorithm}
696   \begin{algorithmic}[1]
697     % \footnotesize
698     \Require ~
699     \begin{description}
700     \item [{$N$}] number of clusters in the grid.
701     \item [{$M$}] number of nodes in each cluster.
702     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
703     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
704     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
705     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
706     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
707     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
708     \end{description}
709     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
710
711     \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
712     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
713     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
714     \If{(not the first frequency)}
715           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
716     \EndIf
717     \State $\Told \gets $ computed as in equations (\ref{eq:told}).
718     \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
719     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
720     \State $\Dist \gets 0 $
721     \While {(all nodes have not reached their  minimum   \newline\hspace*{2.5em} frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
722         \If{(not the last freq. \textbf{and} not the slowest node)}
723         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
724         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
725         \EndIf
726        \State $\Tnew \gets $ computed as  in equations (\ref{eq:perf}). 
727        \State $\Ereduced \gets $ computed as  in equations (\ref{eq:energy}). 
728        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
729        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
730       \If{$(\Pnorm - \Enorm > \Dist)$}
731         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
732         \State $\Dist \gets \Pnorm - \Enorm$
733       \EndIf
734     \EndWhile
735     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
736   \end{algorithmic}
737   \caption{Scaling factors selection algorithm}
738   \label{HSA}
739 \end{algorithm}
740
741 \begin{algorithm}
742   \begin{algorithmic}[1]
743     % \footnotesize
744     \For {$k=1$ to \textit{some iterations}}
745       \State Computations section.
746       \State Communications section.
747       \If {$(k=1)$}
748         \State Gather all times of computation and\newline\hspace*{3em}%
749                communication from each node.
750         \State Call Algorithm \ref{HSA}.
751         \State Compute the new frequencies from the\newline\hspace*{3em}%
752                returned optimal scaling factors.
753         \State Set the new frequencies to nodes.
754       \EndIf
755     \EndFor
756   \end{algorithmic}
757   \caption{DVFS algorithm}
758   \label{dvfs}
759 \end{algorithm}
760
761
762 In this section, the scaling factors selection algorithm for  grids, algorithm~\ref{HSA}, 
763 is presented. It selects the vector of the frequency
764 scaling factors  that gives the best trade-off between minimizing the
765 energy consumption and maximizing the performance of a message passing
766 synchronous iterative application executed on a  grid. It works
767 online during the execution time of the iterative message passing program.  It
768 uses information gathered during the first iteration such as the computation
769 time and the communication time in one iteration for each node. The algorithm is
770 executed after the first iteration and returns a vector of optimal frequency
771 scaling factors that satisfies the objective function (\ref{eq:max}). The
772 program applies DVFS operations to change the frequencies of the CPUs according
773 to the computed scaling factors.  This algorithm is called just once during the
774 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
775 scaling algorithm is called in the iterative MPI program.
776
777 \begin{figure}[!t]
778   \centering
779   \includegraphics[scale=0.6]{fig/init_freq}
780   \caption{Selecting the initial frequencies}
781   \label{fig:st_freq}
782 \end{figure}
783
784 Nodes from distinct clusters in a grid have different computing powers, thus
785 while executing message passing iterative synchronous applications, fast nodes
786 have to wait for the slower ones to finish their computations before being able
787 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
788 periods are called idle or slack times.  The algorithm takes into account this
789 problem and tries to reduce these slack times when selecting the vector of the frequency
790 scaling factors. At first, it selects initial frequency scaling factors
791 that increase the execution times of fast nodes and minimize the differences
792 between the computation times of fast and slow nodes. The value of the initial
793 frequency scaling factor for each node is inversely proportional to its
794 computation time that was gathered from the first iteration. These initial
795 frequency scaling factors are computed as a ratio between the computation time
796 of the slowest node and the computation time of the node $i$ as follows:
797 \begin{equation}
798   \label{eq:Scp}
799   \Scp[ij] =  \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
800 \end{equation}
801 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
802 algorithm computes the initial frequencies for all nodes as a ratio between the
803 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
804 follows:
805 \begin{equation}
806   \label{eq:Fint}
807   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
808 \end{equation}
809 If the computed initial frequency for a node is not available in the gears of
810 that node, it is replaced by the nearest available frequency.  In
811 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
812 ascending order and the frequencies of the faster nodes are scaled down
813 according to the computed initial frequency scaling factors.  The resulting new
814 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
815 frequencies can be considered as a higher bound for the search space of the
816 optimal vector of frequencies because selecting higher frequencies
817 than the higher bound will not improve the performance of the application and it
818 will increase its overall energy consumption.  Therefore the algorithm that
819 selects the frequency scaling factors starts the search method from these
820 initial frequencies and takes a downward search direction toward lower
821 frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
822 A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
823 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
824
825 Therefore, the algorithm iterates on all remaining frequencies, from the higher
826 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
827 energy consumption and performance and selects the optimal vector of the frequency scaling
828 factors. At each iteration the algorithm determines the slowest node
829 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
830 while it lowers the frequency of all other nodes by one gear.  The new overall
831 energy consumption and execution time are computed according to the new scaling
832 factors.  The optimal set of frequency scaling factors is the set that gives the
833 highest distance according to the objective function (\ref{eq:max}).
834
835 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
836 consumed energy for an application running on a homogeneous cluster and a
837  grid platform respectively while increasing the scaling factors. It can
838 be noticed that in a homogeneous cluster the search for the optimal scaling
839 factor should start from the maximum frequency because the performance and the
840 consumed energy decrease from the beginning of the plot. On the other hand, in
841 the  grid platform the performance is maintained at the beginning of the
842 plot even if the frequencies of the faster nodes decrease until the computing
843 power of scaled down nodes are lower than the slowest node. In other words,
844 until they reach the higher bound. It can also be noticed that the higher the
845 difference between the faster nodes and the slower nodes is, the bigger the
846 maximum distance between the energy curve and the performance curve is, which results in bigger energy savings. 
847
848
849 \section{Experimental results}
850 \label{sec.expe}
851 While in~\cite{pdsec2015} the energy  model and the scaling factors selection algorithm were applied to a heterogeneous cluster and  evaluated over the SimGrid simulator~\cite{SimGrid}, 
852 in this paper real experiments were conducted over the grid'5000 platform. 
853
854 \subsection{Grid'5000 architature and power consumption}
855 \label{sec.grid5000}
856 Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via         a special long distance network called RENATER,
857 which is the French National Telecommunication Network for Technology.
858 Each site of the grid is composed of few heterogeneous 
859 computing clusters and each cluster contains many homogeneous nodes. In total,
860 grid'5000 has about  one thousand heterogeneous nodes and eight thousand cores.  In each site,
861 the clusters and their nodes are connected via  high speed local area networks. 
862 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
863
864 Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
865 the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
866 \cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
867  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $\Pmax[jx]$. The difference between the two measured power consumption represents the 
868 dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
869
870
871 The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
872 \begin{equation}
873   \label{eq:pdyn}
874     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Pmax[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
875 \end{equation}
876
877 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
878 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured maximum power values, 
879 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
880 Therefore, the dynamic power of one core is computed as the difference between the maximum 
881 measured value in maximum powers vector and the minimum measured value in the idle powers vector.
882
883 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  20\% of dynamic power consumption of the core.
884
885 In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
886
887 Four clusters from the two sites were selected in the experiments: one cluster from 
888 Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
889 Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
890 frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
891 the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
892 selected clusters and are presented in table  \ref{table:grid5000}.
893
894
895 \begin{figure}[!t]
896   \centering
897   \includegraphics[scale=1]{fig/grid5000}
898   \caption{The selected two sites of grid'5000}
899   \label{fig:grid5000}
900 \end{figure}
901 \begin{figure}[!t]
902   \centering
903   \includegraphics[scale=0.6]{fig/power_consumption.pdf}
904   \caption{The power consumption by one core from the Taurus cluster}
905   \label{fig:power_cons}
906 \end{figure}
907
908
909 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
910 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
911 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
912
913
914   
915 \begin{table}[!t]
916   \caption{CPUs characteristics of the selected clusters}
917   % title of Table
918   \centering
919   \begin{tabular}{|*{7}{c|}}
920     \hline
921     Cluster     & CPU         & Max   & Min   & Diff. & no. of cores    & dynamic power   \\
922     Name        & model       & Freq. & Freq. & Freq. & per CPU         & of one core     \\
923                 &             & GHz   & GHz   & GHz   &                 &           \\
924     \hline
925     Taurus      & Intel       & 2.3  & 1.2  & 0.1     & 6               & \np[W]{35} \\
926                 & Xeon        &       &       &       &                 &            \\
927                 & E5-2630     &       &       &       &                 &            \\         
928     \hline
929     Graphene    & Intel       & 2.53  & 1.2   & 0.133 & 4               & \np[W]{23} \\
930                 & Xeon        &       &       &       &                 &            \\
931                 & X3440       &       &       &       &                 &            \\    
932     \hline
933     Griffon     & Intel       & 2.5   & 2     & 0.5   & 4               & \np[W]{46} \\
934                 & Xeon        &       &       &       &                 &            \\
935                 & L5420       &       &       &       &                 &            \\  
936     \hline
937     Graphite    & Intel       & 2     & 1.2   & 0.1   & 8               & \np[W]{35} \\
938                 & Xeon        &       &       &       &                 &            \\
939                 & E5-2650     &       &       &       &                 &            \\  
940     \hline
941   \end{tabular}
942   \label{table:grid5000}
943 \end{table} 
944
945
946
947 \subsection{The experimental results of the scaling algorithm}
948 \label{sec.res}
949 In this section, the results of the application of the scaling factors selection algorithm \ref{HSA} 
950 to the NAS parallel benchmarks are presented. 
951
952 As mentioned previously, the experiments 
953 were conducted over two sites of grid'5000,  Lyon and Nancy sites. 
954 Two scenarios were considered while selecting the clusters from these two sites :
955 \begin{itemize}
956 \item In the first scenario, nodes from two sites and three heterogeneous clusters were selected. The two sites are connected 
957  via a long distance network.
958 \item In the second scenario nodes from three clusters that are located in one site, Nancy site.  
959 \end{itemize}
960
961 The main reason 
962 behind using these two scenarios is to evaluate the influence of long distance communications (higher latency) on the performance of the 
963 scaling factors selection algorithm. Indeed, in the first scenario the computations to communications ratio 
964 is very low due to the higher communication times which reduces the effect of DVFS operations.
965
966 The NAS parallel benchmarks are executed over 
967 16 and 32 nodes for each scenario. The number of participating computing nodes form each cluster 
968 are different because all the selected clusters do not have the same available number of nodes and all benchmarks do not require the same number of computing nodes.
969 Table \ref{tab:sc} shows the number of nodes used from each cluster for each scenario. 
970
971 \begin{table}[h]
972
973 \caption{The different clusters scenarios}
974 \centering
975 \begin{tabular}{|*{4}{c|}}
976 \hline
977 \multirow{2}{*}{Scenario name}        & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} 
978                                       & Cluster & Site           & No. of  nodes     \\ 
979 \hline
980 \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon                & 5                      \\ \cline{2-4} 
981                                       & Graphene  & Nancy             & 5                      \\ \cline{2-4} 
982                                       & Griffon       & Nancy        & 6                      \\ 
983 \hline
984 \multirow{3}{*}{Tow sites / 32 nodes} & Taurus  & Lyon               & 10                     \\ \cline{2-4} 
985                                       & Graphene  & Nancy             & 10                     \\ \cline{2-4} 
986                                       & Griffon     &Nancy           & 12                     \\ 
987 \hline
988 \multirow{3}{*}{One site / 16 nodes}  & Graphite    & Nancy            & 4                      \\ \cline{2-4} 
989                                       & Graphene     & Nancy           & 6                      \\ \cline{2-4} 
990                                       & Griffon         & Nancy        & 6                      \\ 
991 \hline
992 \multirow{3}{*}{One site / 32 nodes}  & Graphite   & Nancy             & 4                      \\ \cline{2-4} 
993                                       & Graphene      & Nancy          & 14                     \\ \cline{2-4} 
994                                       & Griffon          & Nancy       & 14                       \\ 
995 \hline
996 \end{tabular}
997  \label{tab:sc}
998 \end{table}
999
1000
1001
1002
1003 The NAS parallel benchmarks are executed over these two platforms
1004  with different number of nodes, as in Table \ref{tab:sc}. 
1005 The overall energy consumption of all the benchmarks solving the class D instance and
1006 using the proposed frequency selection algorithm is measured 
1007 using the equation of the reduced energy consumption, equation 
1008 (\ref{eq:energy}). This model uses the measured dynamic and static 
1009 power values  showed in Table \ref{table:grid5000}. The execution
1010 time is measured for all the benchmarks over these different scenarios.  
1011
1012 The energy consumptions  and the execution times for all the benchmarks are 
1013 presented in the plots \ref{fig:eng_sen} and \ref{fig:time_sen} respectively. 
1014
1015 For the majority of the benchmarks, the energy consumed while executing  the NAS benchmarks over one site scenario 
1016 for  16 and 32 nodes is lower than the energy consumed while using two sites. 
1017 The long distance communications between the two distributed sites increase the idle time, which leads to more static energy consumption. 
1018
1019 The execution times of these benchmarks 
1020 over one site with 16 and 32 nodes are also lower when  compared to those of the  two sites 
1021 scenario. Moreover, most of the benchmarks running over the one site scenario their execution times  are approximately divided by two  when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).  
1022
1023 However, the  execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly affected 
1024  in both scenarios. Even when the number of nodes is doubled. On the other hand, the communications of the rest of the benchmarks increases when using long distance communications between two sites or increasing the number of computing nodes.
1025
1026
1027
1028 The energy saving percentage is computed as the ratio between the reduced 
1029 energy consumption, equation (\ref{eq:energy}), and the original energy consumption,
1030 equation (\ref{eq:eorginal}), for all benchmarks as in figure \ref{fig:eng_s}. 
1031 This figure shows that the energy saving percentages of one site scenario for
1032 16 and 32 nodes are bigger than those of the two sites scenario which is due
1033 to the higher  computations to communications ratio in the first scenario   
1034 than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computations times are bigger than the communication times which 
1035 results in  a lower energy consumption. Indeed, the dynamic  consumed power
1036 is exponentially related to the CPU's frequency value. On the other side, the increase in the number of computing nodes can 
1037 increase the communication times and thus produces less energy saving depending on the 
1038 benchmarks being executed. The results of the benchmarks CG, MG, BT and FT show more 
1039 energy saving percentage in one site scenario when executed over 16 nodes comparing to 32 nodes. While, LU and SP consume more energy with 16 nodes than 32 in one site  because their computations to communications ratio is not affected by the increase of the number of local communications. 
1040 \begin{figure}
1041   \centering
1042   \subfloat[The energy consumption by the nodes wile executing the NAS benchmarks over different scenarios    
1043            ]{%
1044     \includegraphics[width=.4\textwidth]{fig/eng_con_scenarios.eps}\label{fig:eng_sen}} \hspace{1cm}%
1045   \subfloat[The execution times of the NAS benchmarks over different scenarios]{%
1046     \includegraphics[width=.4\textwidth]{fig/time_scenarios.eps}\label{fig:time_sen}}
1047   \label{fig:exp-time-energy}
1048   \caption{The  energy consumption and execution time of NAS  Benchmarks over different scenarios}
1049 \end{figure}
1050
1051
1052 \begin{figure}
1053   \centering
1054   \subfloat[The energy reduction while executing the NAS benchmarks over different scenarios ]{%
1055     \includegraphics[width=.4\textwidth]{fig/eng_s.eps}\label{fig:eng_s}} \hspace{2cm}%
1056   \subfloat[The performance degradation of the NAS benchmarks over different scenarios]{%
1057     \includegraphics[width=.4\textwidth]{fig/per_d.eps}\label{fig:per_d}}\hspace{2cm}%
1058     \subfloat[The tradeoff distance between the energy reduction and the performance of the NAS benchmarks  
1059       over different scenarios]{%
1060     \includegraphics[width=.4\textwidth]{fig/dist.eps}\label{fig:dist}}
1061   \label{fig:exp-res}
1062   \caption{The experimental results of different scenarios}
1063 \end{figure}
1064
1065 The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites 
1066 scenario, except for the   EP benchmark which has  no communications. Therefore, the energy saving percentage of this benchmark is 
1067 dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example 
1068 in the one site scenario, the graphite cluster is selected but in the two sits scenario 
1069 this cluster is replaced with Taurus cluster which is more powerful. 
1070 Therefore, the energy saving of EP benchmarks are bigger in the two sites scenario due 
1071 to the higher maximum difference between the computing powers of the nodes. 
1072
1073 In fact, high differences between the nodes' computing powers make the proposed frequencies selecting  
1074 algorithm  select smaller frequencies for the powerful nodes which 
1075 produces less energy consumption and thus more energy saving.
1076 The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
1077
1078
1079 Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios.
1080 The performance degradation percentage for the benchmarks running on two sites  with
1081 16 or 32  nodes is on average equal to 8.3\% or 4.7\% respectively. 
1082 For this scenario, the proposed scaling algorithm selects smaller frequencies for the executions with 32 nodes  without significantly degrading their performance because the communication times are higher with 32 nodes which results in smaller  computations to communications ratio.  On the other hand, the performance degradation percentage  for the benchmarks running  on one site  with
1083 16 or 32  nodes is on average equal to 3.2\% or 10.6\% respectively. In opposition to the two sites scenario, when the number of computing nodes is increased in the one site scenario, the performance degradation percentage is increased. Therefore, doubling the number of computing 
1084 nodes when the communications occur in high speed network does not decrease the computations to 
1085 communication ratio. 
1086
1087 The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to 
1088 the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its 
1089 performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
1090 The rest of the benchmarks showed different performance degradation percentages, which decrease
1091 when the communication times increase and vice versa.
1092
1093 Figure \ref{fig:dist} presents the  distance percentage between the energy saving  and the performance degradation for each benchmark  over both  scenarios. The tradeoff distance percentage can be 
1094 computed as in equation \ref{eq:max}. The one site scenario with 16 nodes gives the best energy and performance 
1095 tradeoff, on average it is equal to  26.8\%. The one site scenario using both 16 and 32 nodes had better energy and performance 
1096 tradeoff comparing to the two sites scenario  because the former has high speed local communications 
1097 which increase the computations to communications ratio  and the latter uses long distance communications which decrease this ratio. 
1098
1099  Finally, the best energy and performance tradeoff depends on all of the following:
1100 1) the computations to communications ratio when there are  communications and slack times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity of the consumed  static and dynamic powers of the nodes.
1101
1102
1103
1104
1105 \subsection{The experimental results of multi-cores clusters}
1106 \label{sec.res-mc}
1107 \textcolor{blue}{
1108 The  clusters of grid'5000 have different number of cores embedded in their nodes
1109 as shown in Table \ref{table:grid5000}. In 
1110 this section, the proposed scaling algorithm is evaluated over the grid'5000 grid while using multi-core nodes selected according to the one site scenario described in the section \ref{sec.res}.
1111 The one site scenario, uses  32 cores from multi-cores nodes instead of 32 distinct nodes. For example if 
1112 the participating number of cores from a certain cluster is equal to 14, 
1113 in the multi-core scenario the selected nodes is equal to  4 nodes while using 
1114 3 or 4 cores from each node. The platforms with one  
1115 core per node and  multi-cores nodes are  shown in Table \ref{table:sen-mc}. 
1116 The energy consumptions and execution times of running the NAS parallel 
1117 benchmarks, class D, over these four different scenarios are presented 
1118 in the figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.}
1119
1120 \begin{table}[]
1121 \centering
1122 \caption{The multicores scenarios}
1123 \begin{tabular}{|*{4}{c|}}
1124 \hline
1125 Scenario name                          & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of  nodes\\ in each cluster\end{tabular} & 
1126                                        \begin{tabular}[c]{@{}c@{}}No. of  cores\\ for each node\end{tabular}  \\ \hline
1127 \multirow{3}{*}{One site/ one core}    & Graphite     & 4               & 1                   \\  \cline{2-4}
1128                                        & Graphene     & 14              & 1                   \\  \cline{2-4}
1129                                        & Griffon      & 14              & 1                   \\ \hline
1130 \multirow{3}{*}{One site/ multicores}  & Graphite     & 1               &  4              \\  \cline{2-4}
1131                                        & Graphene     & 4               & 3 or 4              \\  \cline{2-4}
1132                                        & Griffon      & 4               & 3 or 4                   \\ \hline
1133 \end{tabular}
1134 \label{table:sen-mc}
1135 \end{table}
1136
1137
1138 \begin{figure}
1139   \centering
1140   \subfloat[Comparing the  execution times of running NAS benchmarks over one core and multicores scenarios]{%
1141     \includegraphics[width=.4\textwidth]{fig/time.eps}\label{fig:time-mc}} \hspace{1cm}%
1142   \subfloat[Comparing the  energy consumptions of running NAS benchmarks over one core and multi-cores scenarios]{%
1143     \includegraphics[width=.4\textwidth]{fig/eng_con.eps}\label{fig:eng-cons-mc}}
1144     \label{fig:eng-cons}
1145   \caption{The energy consumptions and execution times of NAS benchmarks over one core and multi-cores scenarios}
1146 \end{figure}
1147
1148
1149 \textcolor{blue}{
1150 The execution times for most of  the NAS  benchmarks are higher over the one site multi-cores per node scenario 
1151 than the execution time of those running over one site single core per node  scenario. Indeed,  
1152  the communication times  are higher in the one site multi-cores scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. Moreover, the cores of a node share the memory bus which can be also saturated and become a bottleneck.    
1153 The experiments showed that for most of the NAS benchmarks,      
1154 the one site one core scenario gives the best execution times because the communication times are the lowest. 
1155 Indeed, in this scenario each core has a dedicated network link and memory bus.  
1156 Moreover, the energy consumptions of the NAS benchmarks are lower over the 
1157 one site one core scenario  than over the one site multi-cores scenario because 
1158 the first scenario had less execution time than the latter which results in less static energy being consumed.
1159 The computations to communications ratios of the NAS benchmarks are higher over 
1160 the one site one core scenario  when compared to the ratio of the multi-cores scenario. 
1161 More energy reduction was achieved when this ratio is increased because the proposed scaling algorithm selects smaller frequencies that decrease the dynamic power consumption. 
1162 These experiments also showed that the energy 
1163 consumption and the execution times of the EP and MG benchmarks do not change significantly over these two
1164 scenarios  because there are no or small communications,  
1165 which could increase or decrease the static power consumptions. Contrary to EP and MG, the  energy consumptions and the execution times of the rest of the  benchmarks  vary according to the  communication times that are different from one scenario to the other.
1166 The energy saving percentages of all NAS benchmarks running over these two scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that  the energy saving percentages in the one site one 
1167 core and one site multi-cores scenarios
1168 are approximately equivalent, on average they are equal to  25.9\% and 25.1\% respectively. In both scenarios there 
1169 are a small difference  in the computations to communications ratios, which leads 
1170 the proposed scaling algorithm to select similar frequencies for both scenarios.  
1171 The performance degradation percentages of the NAS benchmarks are presented in
1172 figure \ref{fig:per-d-mc}. It shows that the performance degradation percentages for the NAS benchmarks over one site one core is on average equal to 10.6\% and is higher than these executed over the one site multi-cores scenario, which is on average equal to 7.5\%. 
1173 The performance degradation percentages over one site multi-cores is lower because  the computations to communications ratio is decreased. Therefore, selecting big
1174 frequencies by the scaling algorithm are proportional to this ratio, and thus the execution time do not increase significantly.
1175 The tradeoff distance percentages of the NAS benchmarks over the two scenarios are presented 
1176 in the figure \ref{fig:dist-mc}. 
1177 These  tradeoff distance percentages are used to verify which scenario is the best in terms of energy reduction and performance. The figure shows that using muti-cores  scenario gives bigger tradeoff distance percentages, on overage equal to 17.6\%  than using one core per node scenario,  on average  equal to 15.3\%.}
1178
1179
1180
1181 \begin{figure}
1182   \centering
1183     \subfloat[The energy saving of running NAS benchmarks over one core and multicores scenarios]{%
1184     \includegraphics[width=.4\textwidth]{fig/eng_s_mc.eps}\label{fig:eng-s-mc}} \hspace{2cm}%
1185     \subfloat[The performance degradation of running NAS benchmarks over one core and multicores scenarios
1186       ]{%
1187     \includegraphics[width=.4\textwidth]{fig/per_d_mc.eps}\label{fig:per-d-mc}}\hspace{2cm}%
1188     \subfloat[The tradeoff distance of running NAS benchmarks over one core and multicores scenarios]{%
1189     \includegraphics[width=.4\textwidth]{fig/dist_mc.eps}\label{fig:dist-mc}}
1190   \label{fig:exp-res}
1191   \caption{The experimental results of one core and multi-cores scenarios}
1192 \end{figure}
1193
1194
1195
1196 \subsection{Experiments with different static and dynamic powers consumption scenarios}
1197 \label{sec.pow_sen}
1198
1199 In section \ref{sec.grid5000}, since it was not possible to measure the static power consumed by a CPU,   the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too. 
1200
1201 The aim of  this section is to evaluate the scaling algorithm while assuming different values of static powers. 
1202 In addition to the previously used  percentage of static power, two new static power ratios,  10\% and 30\% of the measured dynamic power of the core, are used in this section.
1203 The experiments have been executed with these two new static power scenarios  over the one site one core per node scenario.
1204 In these experiments, the class D of the NAS parallel benchmarks are executed over Nancy's site. 16 computing nodes from the three clusters, Graphite, Graphene and Griffon, where used in this experiment. 
1205
1206
1207 \begin{figure}
1208   \centering
1209   \subfloat[The energy saving percentages for the nodes executing the NAS benchmarks over the three power scenarios]{%
1210     \includegraphics[width=.4\textwidth]{fig/eng_pow.eps}\label{fig:eng-pow}} \hspace{2cm}%
1211   \subfloat[The performance degradation percentages for the NAS benchmarks over the three power scenarios]{%
1212     \includegraphics[width=.4\textwidth]{fig/per_pow.eps}\label{fig:per-pow}}\hspace{2cm}%
1213     \subfloat[The tradeoff distance between the energy reduction and the performance of the NAS benchmarks over the three power scenarios]{%
1214       
1215     \includegraphics[width=.4\textwidth]{fig/dist_pow.eps}\label{fig:dist-pow}}
1216   \label{fig:exp-pow}
1217   \caption{The experimental results of different static power scenarios}
1218 \end{figure}
1219
1220
1221
1222 \begin{figure}
1223   \centering
1224   \includegraphics[scale=0.5]{fig/three_scenarios.pdf}
1225   \caption{Comparing the selected frequency scaling factors for the MG benchmark over the three static power scenarios}
1226   \label{fig:fre-pow}
1227 \end{figure}
1228
1229 The energy saving percentages of the NAS benchmarks with the three static power scenarios are presented 
1230 in figure \ref{fig:eng_sen}. This figure shows that the  10\% of static power scenario 
1231 gives the biggest energy saving percentages in comparison to the 20\% and 30\% static power 
1232 scenarios. The small value of the static power consumption makes the proposed 
1233 scaling algorithm  select smaller frequencies for the CPUs. 
1234 These smaller frequencies reduce the dynamic energy consumption more than increasing the consumed static energy which gives             less overall energy consumption. 
1235 The energy saving percentages of the 30\% static power scenario is the smallest between the other scenarios, because the scaling algorithm selects bigger frequencies for the CPUs which increases the energy consumption. Figure \ref{fig:fre-pow} demonstrates that the proposed scaling algorithm selects   the best frequency scaling factors   according to the static power consumption ratio being used.
1236
1237 The performance degradation percentages are presented in the figure \ref{fig:per-pow}.
1238 The 30\% static power scenario had less performance degradation percentage  because the scaling algorithm
1239 had  selected big frequencies for the CPUs. While, 
1240 the inverse happens in the 10\% and 20\% scenarios because the scaling algorithm had selected  CPUs' frequencies smaller than those of the 30\% scenario. The tradeoff distance percentage for the NAS benchmarks with these three static power scenarios 
1241 are presented in the figure \ref{fig:dist}. 
1242 It shows that the best  tradeoff
1243 distance percentage is obtained with  the  10\% static power scenario  and this percentage 
1244 is decreased for the other two scenarios because the scaling algorithm had selected different frequencies according to the static power values.
1245
1246 In the EP benchmark, the energy saving, performance degradation and tradeoff 
1247 distance percentages for the these static power scenarios are not significantly different because there is no communication in this benchmark. Therefore, the static power is only consumed during computation and   the proposed scaling algorithm selects similar frequencies for the three scenarios.  On the other hand,  for the rest of the benchmarks,  the scaling algorithm  selects  the values of the frequencies according to the communication times of each benchmark because the static energy consumption increases  proportionally to the  communication times.
1248
1249
1250  
1251 \subsection{The comparison of the proposed frequencies selecting algorithm }
1252 \label{sec.compare_EDP}
1253
1254 Finding the frequencies that gives the best tradeoff between the energy consumption and the performance for a parallel 
1255 application is not a trivial task.  Many algorithms have been proposed to tackle this problem.  
1256 In this section, the proposed frequencies selecting algorithm is compared to a method that uses the well known  energy and delay product objective function, $EDP=energy \times delay$, that has been used by many researchers  \cite{EDP_for_multi_processors,Energy_aware_application_scheduling,Exploring_Energy_Performance_TradeOffs}. 
1257 This objective function  was also used by Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS} where they select the frequencies that minimize the EDP product and apply them with DVFS operations to  the multi-cores 
1258 architecture. Their online algorithm predicts the energy consumption and execution time of a processor before using the EDP method.
1259
1260 To fairly compare the proposed frequencies scaling algorithm to  Spiliopoulos et al. algorithm, called Maxdist and EDP respectively, both algorithms use the same energy model,  equation \ref{eq:energy} and
1261 execution time model, equation \ref{eq:perf}, to predict the energy consumption and the execution time for each computing node.
1262 Moreover, both algorithms start the search space from the upper bound computed as in equation   \ref{eq:Fint}.
1263 Finally, the resulting EDP algorithm is an exhaustive search algorithm that tests all the possible frequencies, starting from the initial frequencies (upper bound), 
1264 and selects the vector of frequencies that minimize the EDP product.
1265
1266 Both algorithms were applied to the class D of the NAS benchmarks over 16 nodes.
1267 The participating computing nodes are distributed  according to the two scenarios described in  section \ref{sec.res}. 
1268 The experimental results, the energy saving, performance degradation and tradeoff distance percentages, are 
1269 presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively.
1270
1271
1272 \begin{figure}
1273   \centering
1274   \subfloat[The energy reduction induced by the Maxdist method and the EDP method]{%
1275     \includegraphics[width=.4\textwidth]{fig/edp_eng}\label{fig:edp-eng}} \hspace{2cm}%
1276     \subfloat[The performance degradation induced by  the Maxdist method and the EDP method]{%
1277     \includegraphics[width=.4\textwidth]{fig/edp_per}\label{fig:edp-perf}}\hspace{2cm}%
1278     \subfloat[The tradeoff distance between the energy consumption reduction and the performance for the Maxdist method and the  EDP method]{%
1279     \includegraphics[width=.4\textwidth]{fig/edp_dist}\label{fig:edp-dist}}
1280   \label{fig:edp-comparison}
1281   \caption{The comparison results}
1282 \end{figure}
1283
1284 As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios. 
1285 The proposed algorithm gives better results than EDP  because it 
1286 maximizes the energy saving and the performance at the same time. 
1287 Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
1288 Whereas, the EDP algorithm gives sometimes negative tradeoff values for some benchmarks in the two sites scenarios.
1289 These negative tradeoff values mean that the performance degradation percentage is higher than energy saving percentage.
1290 The high positive values of the tradeoff distance percentage mean that the  energy saving percentage is much higher than the performance degradation percentage. 
1291 The time complexity of both Maxdist and EDP algorithms are $O(N \cdot M \cdot F)$ and 
1292 $O(N \cdot M \cdot F^2)$ respectively, where $N$ is the number of the clusters, $M$ is the number of nodes and $F$ is the 
1293 maximum number of available frequencies. When Maxdist is applied to a benchmark that is being executed over 32 nodes distributed between Nancy and Lyon sites, it takes on average  $0.01 ms$  to compute the best frequencies while EDP is on average ten times slower over the same architecture.  
1294
1295
1296 \section{Conclusion}
1297 \label{sec.concl}
1298 This paper has presented a new online frequencies selection algorithm.
1299  The algorithm selects the best vector of 
1300 frequencies that maximizes  the tradeoff distance 
1301 between the predicted energy consumption and the predicted execution time of the distributed 
1302 iterative applications running over a heterogeneous grid. A new energy model 
1303 is used by the proposed algorithm to predict the energy consumption 
1304 of the distributed iterative message passing application running over a grid architecture.
1305 To evaluate the proposed method on a real heterogeneous grid platform, it was applied on the  
1306  NAS parallel benchmarks   and the  class D instance was executed over the  grid'5000 testbed platform. 
1307  The experimental results showed that the algorithm reduces  on average 30\% of the energy consumption
1308 for all the NAS benchmarks   while  only degrading by 3.2\% on average  the performance. 
1309 The Maxdist algorithm was also evaluated in different scenarios that vary in the distribution of the computing nodes between different clusters' sites or \textcolor{blue}{between using one core and multi-cores per node} or in the values of the consumed static power. The algorithm selects different vector of frequencies according to the 
1310 computations and communication times ratios, and  the values of the static and measured dynamic powers of the CPUs. 
1311 Finally, the proposed algorithm was compared to another method that uses
1312 the well known energy and delay product as an objective function. The comparison results showed 
1313 that the proposed algorithm outperforms the latter by selecting a vector of frequencies that gives a better tradeoff  between energy consumption reduction and performance. 
1314
1315 In the near future, we would like to develop a similar method that is adapted to
1316 asynchronous iterative applications where iterations are not synchronized and communications are overlapped with computations. 
1317  The development of
1318 such a method might require a new energy model because the
1319 number of iterations is not known in advance and depends on
1320 the global convergence of the iterative system.
1321
1322
1323
1324 \section*{Acknowledgment}
1325
1326 This work  has been  partially supported by  the Labex ACTION  project (contract
1327 ``ANR-11-LABX-01-01'').  Computations  have been performed  on the Grid'5000 platform. As  a  PhD student,
1328 Mr. Ahmed  Fanfakh, would  like to  thank the University  of Babylon  (Iraq) for
1329 supporting his work.
1330
1331
1332 \bibliographystyle{elsarticle-num}
1333 \bibliography{my_reference}
1334
1335 \end{document}
1336
1337