]> AND Private Git Repository - mpi-energy2.git/blob - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
d313a4225ea91211da7c0f0533bbd30a52cdcd43
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
1 \documentclass[conference]{IEEEtran}
2
3 \usepackage[T1]{fontenc}
4 \usepackage[utf8]{inputenc}
5 \usepackage[english]{babel}
6 \usepackage{algpseudocode}
7 \usepackage{graphicx}
8 \usepackage{algorithm}
9 \usepackage{subfig}
10 \usepackage{amsmath}
11 \usepackage{url}
12 \usepackage{multirow}
13 \DeclareUrlCommand\email{\urlstyle{same}}
14
15 \usepackage[autolanguage,np]{numprint}
16 \AtBeginDocument{%
17   \renewcommand*\npunitcommand[1]{\text{#1}}
18   \npthousandthpartsep{}}
19
20 \usepackage{xspace}
21 \usepackage[textsize=footnotesize]{todonotes}
22 \newcommand{\AG}[2][inline]{%
23   \todo[color=green!50,#1]{\sffamily\textbf{AG:} #2}\xspace}
24 \newcommand{\JC}[2][inline]{%
25   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
26
27 \newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
28
29 %% used to put some subscripts lower, and make them more legible
30 \newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
31
32 \newcommand{\CL}{\Xsub{C}{L}}
33 \newcommand{\Dist}{\mathit{Dist}}
34 \newcommand{\EdNew}{\Xsub{E}{dNew}}
35 \newcommand{\Eind}{\Xsub{E}{ind}}
36 \newcommand{\Enorm}{\Xsub{E}{Norm}}
37 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
38 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
39 \newcommand{\Es}{\Xsub{E}{S}}
40 \newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
41 \newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
42 \newcommand{\Fnew}{\Xsub{F}{new}}
43 \newcommand{\Ileak}{\Xsub{I}{leak}}
44 \newcommand{\Kdesign}{\Xsub{K}{design}}
45 \newcommand{\MaxDist}{\mathit{Max}\Dist}
46 \newcommand{\MinTcm}{\mathit{Min}\Tcm}
47 \newcommand{\Ntrans}{\Xsub{N}{trans}}
48 \newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
49 \newcommand{\PdNew}{\Xsub{P}{dNew}}
50 \newcommand{\PdOld}{\Xsub{P}{dOld}}
51 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
52 \newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
53 \newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
54 \newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
55 \newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
56 \newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
57 \newcommand{\Pmax}[1][]{\Xsub{P}{max}_{\fxheight{#1}}}
58 \newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
59 \newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
60 \newcommand{\Tnew}{\Xsub{T}{New}}
61 \newcommand{\Told}{\Xsub{T}{Old}}
62
63 \begin{document}
64
65 \title{Energy Consumption Reduction with DVFS for \\
66   Message Passing Iterative Applications on \\
67   Heterogeneous Architectures}
68
69 \author{%
70   \IEEEauthorblockN{%
71     Jean-Claude Charr,
72     Raphaël Couturier,
73     Ahmed Fanfakh and
74     Arnaud Giersch
75   }
76   \IEEEauthorblockA{%
77     FEMTO-ST Institute, University of Franche-Comté\\
78     IUT de Belfort-Montbéliard,
79     19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
80     % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
81     % Fax: \mbox{+33 3 84 58 77 81}\\      % Dept Info
82     Email: \email{{jean-claude.charr,raphael.couturier,ahmed.fanfakh_badri_muslim,arnaud.giersch}@univ-fcomte.fr}
83    }
84   }
85
86 \maketitle
87
88
89 \begin{abstract}
90
91   In recent years, green computing topic  has being became an important topic in 
92   the domain of the research. The increase in computing power of the computing 
93   platforms is increased the energy consumption and the carbon dioxide emissions.
94   Many techniques have being used to minimize the cost of the energy consumption 
95   and reduce environmental pollution. Dynamic voltage and frequency scaling (DVFS) 
96   is one of these techniques. It used to reduce the power consumption of the CPU 
97   while computing by lowering its frequency. Moreover, lowering the frequency of 
98   a CPU may increase the execution time of an application running on that 
99   processor. Therefore, the frequency that gives the best trade-off between 
100   the energy consumption and the performance of an application must be selected. 
101
102   In this paper, a new online frequency selecting algorithm for heterogeneous
103   grid (heterogeneous CPUs) is presented.  It selects the frequencies and tries to give the best
104   trade-off between energy saving and performance degradation, for each node
105   computing the message passing iterative application. The algorithm has a small
106   overhead and works without training or profiling. It uses a new energy model
107   for message passing iterative applications running on a heterogeneous
108   grid. The proposed algorithm is evaluated on real testbed, grid'5000 platform, while
109   running the NAS parallel benchmarks.  The experiments show that it reduces the
110   energy consumption on average up to \np[\%]{30} while declines the performance
111   on average by \np[\%]{3} only for the same instance. Finally, the algorithm is 
112   compared to an existing method, the comparison results show that it outperforms the
113   latter in term of energy and performance trade-off.
114 \end{abstract}
115
116
117 \section{Introduction}
118 \label{sec.intro}
119 \textcolor{blue}{
120 The need for more computing power is continually increasing. To partially
121 satisfy this need, most supercomputers constructors just put more computing
122 nodes in their platform. The resulting platforms may achieve higher floating
123 point operations per second (FLOPS), but the energy consumption and the heat
124 dissipation are also increased.  As an example, the Chinese supercomputer
125 Tianhe-2 had the highest FLOPS in June 2015  according to the Top500 list
126 \cite{TOP500_Supercomputers_Sites}.  However, it was also the most power hungry
127 platform with its over 3 million cores consuming around 17.8 megawatts.
128 Moreover, according to the U.S.  annual energy outlook 2015
129 \cite{U.S_Annual.Energy.Outlook.2015}, the price of energy for 1 megawatt-hour
130 was approximately equal to \$70.  Therefore, the price of the energy consumed by
131 the Tianhe-2 platform is approximately more than \$10 million each year.  The
132 computing platforms must be more energy efficient and offer the highest number
133 of FLOPS per watt possible, such as the Shoubu-ExaScaler from RIKEN
134 which became the top of the Green500 list in June 2015 \cite{Green500_List}.
135 This heterogeneous platform executes more than 7 GFLOPS per watt while consuming
136 50.32 kilowatts.
137 }
138
139 \textcolor{blue}{
140 Besides platform improvements, there are many software and hardware techniques
141 to lower the energy consumption of these platforms, such as scheduling, DVFS,
142 \dots{} DVFS is a widely used process to reduce the energy consumption of a
143 processor by lowering its frequency
144 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
145 the number of FLOPS executed by the processor which may increase the execution
146 time of the application running over that processor.  Therefore, researchers use
147 different optimization strategies to select the frequency that gives the best
148 trade-off between the energy reduction and performance degradation ratio. In
149 \cite{Our_first_paper} and \cite{pdsec2015} , a frequencies selecting algorithm was proposed to reduce
150 the energy consumption of message passing iterative applications running over
151 homogeneous  and heterogeneous clusters respectively.  
152 The results of the experiments show significant energy
153 consumption reductions. All the experimental results were conducted over 
154 Simgrid simulator \cite{SimGrid}, which offers easy tools to create a homogeneous and heterogeneous platforms. In this paper, a new frequencies selecting algorithm
155 adapted for heterogeneous grid platform is presented and executed over real testbed, 
156 the grid'5000 platform \cite{grid5000}. It selects the vector of
157 frequencies, for a heterogeneous grid platform running a message passing iterative
158 application, that simultaneously tries to offer the maximum energy reduction and
159 minimum performance degradation ratio. The algorithm has a very small overhead,
160 works online and does not need any training or profiling.}
161
162 \textcolor{blue}{
163 This paper is organized as follows: Section~\ref{sec.relwork} presents some
164 related works from other authors.  Section~\ref{sec.exe} describes how the
165 execution time of message passing programs can be predicted.  It also presents
166 an energy model that predicts the energy consumption of an application running
167 over a heterogeneous grid. Section~\ref{sec.compet} presents the
168 energy-performance objective function that maximizes the reduction of energy
169 consumption while minimizing the degradation of the program's performance.
170 Section~\ref{sec.optim} details the proposed frequencies selecting algorithm.
171 Section~\ref{sec.expe} presents the results of applying the algorithm on the 
172 NAS parallel benchmarks and executing them on a grid'5000 testbed. 
173 It shows the results of running different scenarios using multi-cores and one core per node 
174 and comparing them. It also shows the results of running
175 three different power scenarios and comparing them. Moreover, it shows the
176 comparison results between the proposed method and an existing method.  Finally,
177 in Section~\ref{sec.concl} the paper ends with a summary and some future works.}
178
179 \section{Related works}
180 \label{sec.relwork}
181
182 DVFS is a technique used in modern processors to scale down both the voltage and
183 the frequency of the CPU while computing, in order to reduce the energy
184 consumption of the processor. DVFS is also allowed in GPUs to achieve the same
185 goal. Reducing the frequency of a processor lowers its number of FLOPS and may
186 degrade the performance of the application running on that processor, especially
187 if it is compute bound. Therefore selecting the appropriate frequency for a
188 processor to satisfy some objectives, while taking into account all the
189 constraints, is not a trivial operation.  Many researchers used different
190 strategies to tackle this problem. Some of them developed online methods that
191 compute the new frequency while executing the application, such
192 as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
193 Others used offline methods that may need to run the application and profile
194 it before selecting the new frequency, such
195 as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
196 The methods could be heuristics, exact or brute force methods that satisfy
197 varied objectives such as energy reduction or performance. They also could be
198 adapted to the execution's environment and the type of the application such as
199 sequential, parallel or distributed architecture, homogeneous or heterogeneous
200 platform, synchronous or asynchronous application, \dots{}
201
202 In this paper, we are interested in reducing energy for message passing
203 iterative synchronous applications running over heterogeneous grid platforms.  Some
204 works have already been done for such platforms and they can be classified into
205 two types of heterogeneous platforms:
206 \begin{itemize}
207 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
208 \item the platform is only composed of heterogeneous CPUs.
209 \end{itemize}
210
211 For the first type of platform, the computing intensive parallel tasks are
212 executed on the GPUs and the rest are executed on the CPUs.  Luley et
213 al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
214 heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
215 goal was to maximize the energy efficiency of the platform during computation by
216 maximizing the number of FLOPS per watt generated.
217 In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
218 al. developed a scheduling algorithm that distributes workloads proportional to
219 the computing power of the nodes which could be a GPU or a CPU. All the tasks
220 must be completed at the same time.  In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
221 Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
222 DVFS gave better energy and performance efficiency than other clusters only
223 composed of CPUs.
224
225 The work presented in this paper concerns the second type of platform, with
226 heterogeneous CPUs.  Many methods were conceived to reduce the energy
227 consumption of this type of platform.  Naveen et
228 al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
229 minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
230 the sum of slack times that happen during synchronous communications) by
231 dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.
232 Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an
233 algorithm that divides the executed tasks into two types: the critical and non
234 critical tasks. The algorithm scales down the frequency of non critical tasks
235 proportionally to their slack and communication times while limiting the
236 performance degradation percentage to less than \np[\%]{10}.
237 In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
238 heterogeneous cluster composed of two types of Intel and AMD processors. They
239 use a gradient method to predict the impact of DVFS operations on performance.
240 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
241 \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
242 frequencies for a specified heterogeneous cluster are selected offline using
243 some heuristic.  Chen et
244 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
245 programming approach to minimize the power consumption of heterogeneous servers
246 while respecting given time constraints.  This approach had considerable
247 overhead.  In contrast to the above described papers, this paper presents the
248 following contributions :
249 \begin{enumerate}
250 \item two new energy and performance models for message passing iterative
251   synchronous applications running over a heterogeneous grid platform. Both models
252   take into account communication and slack times. The models can predict the
253   required energy and the execution time of the application.
254
255 \item a new online frequency selecting algorithm for heterogeneous grid
256   platforms. The algorithm has a very small overhead and does not need any
257   training or profiling. It uses a new optimization function which
258   simultaneously maximizes the performance and minimizes the energy consumption
259   of a message passing iterative synchronous application.
260
261 \end{enumerate}
262
263
264
265 \section{The performance and energy consumption measurements on heterogeneous grid architecture}
266 \label{sec.exe}
267
268 \subsection{The execution time of message passing distributed iterative
269   applications on a heterogeneous platform}
270
271 In this paper, we are interested in reducing the energy consumption of message
272 passing distributed iterative synchronous applications running over
273 heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
274 heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth 
275 and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
276
277 \begin{figure}[!t]
278   \centering
279   \includegraphics[scale=0.6]{fig/commtasks}
280   \caption{Parallel tasks on a heterogeneous platform}
281   \label{fig:heter}
282 \end{figure}
283
284 The overall execution time of a distributed iterative synchronous application 
285 over a heterogeneous grid consists of the sum of the computation time and 
286 the communication time for every iteration on a node. However, due to the
287 heterogeneous computation power of the computing clusters, slack times may occur
288 when fast nodes have to wait, during synchronous communications, for the slower
289 nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
290 overall execution time of the program is the execution time of the slowest task 
291 which has the highest computation time and no slack time.
292
293 Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
294 modern processors, that reduces the energy consumption of a CPU by scaling
295 down its voltage and frequency.  Since DVFS lowers the frequency of a CPU
296 and consequently its computing power, the execution time of a program running
297 over that scaled down processor may increase, especially if the program is
298 compute bound.  The frequency reduction process can be  expressed by the scaling
299 factor S which is the ratio between  the maximum and the new frequency of a CPU
300 as in (\ref{eq:s}).
301 \begin{equation}
302   \label{eq:s}
303   S = \frac{\Fmax}{\Fnew}
304 \end{equation}
305 The execution time of a compute bound sequential program is linearly
306 proportional to the frequency scaling factor $S$.  On the other hand, message
307 passing distributed applications consist of two parts: computation and
308 communication.  The execution time of the computation part is linearly
309 proportional to the frequency scaling factor $S$ but the communication time is
310 not affected by the scaling factor because the processors involved remain idle
311 during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  The
312 communication time for a task is the summation of periods of time that begin
313 with an MPI call for sending or receiving a message until the message is
314 synchronously sent or received.
315
316 Since in a heterogeneous grid each cluster has different characteristics,
317 especially different frequency gears, when applying DVFS operations on the nodes 
318 of these clusters, they may get different scaling factors represented by a scaling vector:
319 $(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
320 be able to predict the execution time of message passing synchronous iterative
321 applications running over a heterogeneous grid, for different vectors of
322 scaling factors, the communication time and the computation time for all the
323 tasks must be measured during the first iteration before applying any DVFS
324 operation. Then the execution time for one iteration of the application with any
325 vector of scaling factors can be predicted using (\ref{eq:perf}).
326 \begin{equation}
327   \label{eq:perf}
328   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij}) 
329   +\mathop{\min_{j=1,\dots,M}}  (\Tcm[hj])
330 \end{equation}
331
332 where $N$ is the number of  clusters in the grid, $M$ is the number of  nodes in
333 each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
334 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
335 first  iteration. The model computes the maximum computation time with scaling factor 
336 from each node added to the communication time of the slowest node in the slowest cluster $h$.
337 It means only the communication time without any slack time is taken into account.  
338 Therefore, the execution time of the iterative application is equal to
339 the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
340 number of iterations of that application.
341
342 This prediction model is developed from the model to predict the execution time
343 of message passing distributed applications for homogeneous and heterogeneous clusters
344 ~\cite{Our_first_paper,pdsec2015}.  The execution time prediction model is
345 used in the method to optimize both the energy consumption and the performance
346 of iterative methods, which is presented in the following sections.
347
348
349 \subsection{Energy model for heterogeneous grid platform}
350
351 Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
352   Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
353   Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
354 a processor into two power metrics: the static and the dynamic power.  While the
355 first one is consumed as long as the computing unit is turned on, the latter is
356 only consumed during computation times.  The dynamic power $\Pd$ is related to
357 the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
358 and operational frequency $F$, as shown in (\ref{eq:pd}).
359 \begin{equation}
360   \label{eq:pd}
361   \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
362 \end{equation}
363 The static power $\Ps$ captures the leakage power as follows:
364 \begin{equation}
365   \label{eq:ps}
366    \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
367 \end{equation}
368 where V is the supply voltage, $\Ntrans$ is the number of transistors,
369 $\Kdesign$ is a design dependent parameter and $\Ileak$ is a
370 technology dependent parameter.  The energy consumed by an individual processor
371 to execute a given program can be computed as:
372 \begin{equation}
373   \label{eq:eind}
374   \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
375 \end{equation}
376 where $T$ is the execution time of the program, $\Tcp$ is the computation
377 time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
378 communication and no slack time.
379
380 The main objective of DVFS operation is to reduce the overall energy
381 consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  The operational
382 frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
383 F$ with some constant $\beta$.~This equation is used to study the change of the
384 dynamic voltage with respect to various frequency values
385 in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction process of the
386 frequency can be expressed by the scaling factor $S$ which is the ratio between
387 the maximum and the new frequency as in (\ref{eq:s}).  The CPU governors are
388 power schemes supplied by the operating system's kernel to lower a core's
389 frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
390 follows:
391 \begin{equation}
392   \label{eq:fnew}
393    \Fnew = S^{-1} \cdot \Fmax
394 \end{equation}
395 Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
396 equation for dynamic power consumption:
397 \begin{multline}
398   \label{eq:pdnew}
399    \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
400    {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
401 \end{multline}
402 where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the
403 new frequency and the maximum frequency respectively.
404
405 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
406 $S^{-3}$ when reducing the frequency by a factor of
407 $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
408 proportional to the frequency of a CPU, the computation time is increased
409 proportionally to $S$.  The new dynamic energy is the dynamic power multiplied
410 by the new time of computation and is given by the following equation:
411 \begin{equation}
412   \label{eq:Edyn}
413    \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp
414 \end{equation}
415 The static power is related to the power leakage of the CPU and is consumed
416 during computation and even when idle. As
417 in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
418 the static power of a processor is considered as constant during idle and
419 computation periods, and for all its available frequencies.  The static energy
420 is the static power multiplied by the execution time of the program.  According
421 to the execution time model in (\ref{eq:perf}), the execution time of the
422 program is the sum of the computation and the communication times. The
423 computation time is linearly related to the frequency scaling factor, while this
424 scaling factor does not affect the communication time.  The static energy of a
425 processor after scaling its frequency is computed as follows:
426 \begin{equation}
427   \label{eq:Estatic}
428   \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
429 \end{equation}
430
431 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
432 different dynamic and static powers from the nodes of the other clusters, 
433 noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Therefore, even if the distributed 
434 message passing iterative application is load balanced, the computation time of each CPU $j$ 
435 in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
436 computed in order to decrease the overall energy consumption of the application
437 and reduce slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
438 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
439 see Figure~\ref{fig:heter}.  Therefore, all nodes do not have equal
440 communication times. While the dynamic energy is computed according to the
441 frequency scaling factor and the dynamic power of each node as in
442 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
443 of one iteration multiplied by the static power of each processor.  The overall
444 energy consumption of a message passing distributed application executed over a
445 heterogeneous grid platform during one iteration is the summation of all dynamic and
446 static energies for $M$ processors in $N$ clusters.  It is computed as follows:
447 \begin{multline}
448   \label{eq:energy}
449  E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot  \Tcp[ij])} +  
450  \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot {} \\
451   (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij}) 
452   +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
453 \end{multline}
454
455 Reducing the frequencies of the processors according to the vector of scaling
456 factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
457 and thus, increase the static energy because the execution time is
458 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
459 for the iterative application can be measured by measuring the energy
460 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
461 of iterations of that application.
462
463 \section{Optimization of both energy consumption and performance}
464 \label{sec.compet}
465
466 Using the lowest frequency for each processor does not necessarily give the most
467 energy efficient execution of an application. Indeed, even though the dynamic
468 power is reduced while scaling down the frequency of a processor, its
469 computation power is proportionally decreased. Hence, the execution time might
470 be drastically increased and during that time, dynamic and static powers are
471 being consumed.  Therefore, it might cancel any gains achieved by scaling down
472 the frequency of all nodes to the minimum and the overall energy consumption of
473 the application might not be the optimal one.  It is not trivial to select the
474 appropriate frequency scaling factor for each processor while considering the
475 characteristics of each processor (computation power, range of frequencies,
476 dynamic and static powers) and the task executed (computation/communication
477 ratio). The aim being to reduce the overall energy consumption and to avoid
478 increasing significantly the execution time.
479 \textcolor{blue}{  In our previous
480 works~\cite{Our_first_paper} and \cite{pdsec2015}, we proposed a methods that select the optimal
481 frequency scaling factors for a homogeneous and a heterogeneous clusters respectively. 
482 Both of the two methods executing a message passing
483 iterative synchronous application while giving the best trade-off between the
484 energy consumption and the performance for such applications.  In this work we
485 are interested in heterogeneous grid as described above.}
486 Due to the
487 heterogeneity of the processors, a vector of scaling factors should be selected
488 and it must give the best trade-off between energy consumption and performance.
489
490 The relation between the energy consumption and the execution time for an
491 application is complex and nonlinear, Thus, unlike the relation between the
492 execution time and the scaling factor, the relation between the energy and the
493 frequency scaling factors is nonlinear, for more details refer
494 to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  Moreover, these relations
495 are not measured using the same metric.  To solve this problem, the execution
496 time is normalized by computing the ratio between the new execution time (after
497 scaling down the frequencies of some processors) and the initial one (with
498 maximum frequency for all nodes) as follows:
499 \begin{equation}
500   \label{eq:pnorm}
501   \Pnorm = \frac{\Tnew}{\Told}                 
502 \end{equation}
503
504
505 Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
506 \begin{equation}
507   \label{eq:told}
508    \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])             
509 \end{equation}
510 In the same way, the energy is normalized by computing the ratio between the
511 consumed energy while scaling down the frequency and the consumed energy with
512 maximum frequency for all  nodes:
513 \begin{equation}
514   \label{eq:enorm}
515   \Enorm = \frac{\Ereduced}{\Eoriginal} 
516 \end{equation}
517
518 Where $\Ereduced$  is computed using (\ref{eq:energy}) and $\Eoriginal$ is 
519 computed as in (\ref{eq:eorginal}).
520
521
522 \begin{equation}
523   \label{eq:eorginal}
524     \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot  \Tcp[ij])  + 
525      \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)       
526 \end{equation}
527
528 While the main goal is to optimize the energy and execution time at the same
529 time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. 
530 According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
531 vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
532 and the execution time simultaneously.  But the main objective is to produce
533 maximum energy reduction with minimum execution time reduction.
534
535 This problem can be solved by making the optimization process for energy and
536 execution time follow the same evolution according to the vector of scaling factors
537 $(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
538 normalized execution time is inverted which gives the normalized performance
539 equation, as follows:
540 \begin{equation}
541   \label{eq:pnorm_inv}
542   \Pnorm = \frac{\Told}{\Tnew}          
543 \end{equation}
544
545 \begin{figure}[!t]
546   \centering
547   \subfloat[Homogeneous cluster]{%
548     \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
549
550   \subfloat[Heterogeneous grid]{%
551     \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
552   \label{fig:rel}
553   \caption{The energy and performance relation}
554 \end{figure}
555
556 Then, the objective function can be modeled in order to find the maximum
557 distance between the energy curve (\ref{eq:enorm}) and the performance curve
558 (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
559 represents the minimum energy consumption with minimum execution time (maximum
560 performance) at the same time, see Figure~\ref{fig:r1} or
561 Figure~\ref{fig:r2}. Then the objective function has the following form:
562 \begin{equation}
563   \label{eq:max}
564   \MaxDist =
565 \mathop{  \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
566       (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
567        \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
568 \end{equation}
569 where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
570 $F$ is the number of available frequencies for each node.  Then, the optimal set 
571 of scaling factors that satisfies (\ref{eq:max}) can be selected.  
572 The objective function can work with any energy model or any power 
573 values for each node (static and dynamic powers). However, the most important 
574 energy reduction gain can be achieved when the energy curve has a convex form as shown 
575 in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
576
577 \section{The scaling factors selection algorithm for  grids }
578 \label{sec.optim}
579
580 \begin{algorithm}
581   \begin{algorithmic}[1]
582     % \footnotesize
583     \Require ~
584     \begin{description}
585     \item [{$N$}] number of clusters in the grid.
586     \item [{$M$}] number of nodes in each cluster.
587     \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
588     \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
589     \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
590     \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
591     \item[{$\Ps[ij]$}] array of the static powers for all nodes.
592     \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
593     \end{description}
594     \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$,  a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
595
596     \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
597     \State $F_{ij} \gets  \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
598     \State Round the computed initial frequencies $F_i$ to the closest  available frequency for each node.
599     \If{(not the first frequency)}
600           \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
601     \EndIf
602     \State $\Told \gets $ computed as in equations (\ref{eq:told}).
603     \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
604     \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
605     \State $\Dist \gets 0 $
606     \While {(all nodes have not reached their  minimum   \newline\hspace*{2.5em} frequency \textbf{or}  $\Pnorm - \Enorm < 0 $)}
607         \If{(not the last freq. \textbf{and} not the slowest node)}
608         \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
609         \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
610         \EndIf
611        \State $\Tnew \gets $ computed as  in equations (\ref{eq:perf}). 
612        \State $\Ereduced \gets $ computed as  in equations (\ref{eq:energy}). 
613        \State $\Pnorm \gets \frac{\Told}{\Tnew}$
614        \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
615       \If{$(\Pnorm - \Enorm > \Dist)$}
616         \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
617         \State $\Dist \gets \Pnorm - \Enorm$
618       \EndIf
619     \EndWhile
620     \State  Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
621   \end{algorithmic}
622   \caption{Scaling factors selection algorithm}
623   \label{HSA}
624 \end{algorithm}
625
626 \begin{algorithm}
627   \begin{algorithmic}[1]
628     % \footnotesize
629     \For {$k=1$ to \textit{some iterations}}
630       \State Computations section.
631       \State Communications section.
632       \If {$(k=1)$}
633         \State Gather all times of computation and\newline\hspace*{3em}%
634                communication from each node.
635         \State Call Algorithm \ref{HSA}.
636         \State Compute the new frequencies from the\newline\hspace*{3em}%
637                returned optimal scaling factors.
638         \State Set the new frequencies to nodes.
639       \EndIf
640     \EndFor
641   \end{algorithmic}
642   \caption{DVFS algorithm}
643   \label{dvfs}
644 \end{algorithm}
645
646
647 In this section, the scaling factors selection algorithm for  grids, algorithm~\ref{HSA}, is presented. It selects the vector of the frequency
648 scaling factors  that gives the best trade-off between minimizing the
649 energy consumption and maximizing the performance of a message passing
650 synchronous iterative application executed on a  grid. It works
651 online during the execution time of the iterative message passing program.  It
652 uses information gathered during the first iteration such as the computation
653 time and the communication time in one iteration for each node. The algorithm is
654 executed after the first iteration and returns a vector of optimal frequency
655 scaling factors that satisfies the objective function (\ref{eq:max}). The
656 program applies DVFS operations to change the frequencies of the CPUs according
657 to the computed scaling factors.  This algorithm is called just once during the
658 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
659 scaling algorithm is called in the iterative MPI program.
660
661 \begin{figure}[!t]
662   \centering
663   \includegraphics[scale=0.45]{fig/init_freq}
664   \caption{Selecting the initial frequencies}
665   \label{fig:st_freq}
666 \end{figure}
667
668 Nodes from distinct clusters in a grid have different computing powers, thus
669 while executing message passing iterative synchronous applications, fast nodes
670 have to wait for the slower ones to finish their computations before being able
671 to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
672 periods are called idle or slack times.  The algorithm takes into account this
673 problem and tries to reduce these slack times when selecting the vector of the frequency
674 scaling factors. At first, it selects initial frequency scaling factors
675 that increase the execution times of fast nodes and minimize the differences
676 between the computation times of fast and slow nodes. The value of the initial
677 frequency scaling factor for each node is inversely proportional to its
678 computation time that was gathered from the first iteration. These initial
679 frequency scaling factors are computed as a ratio between the computation time
680 of the slowest node and the computation time of the node $i$ as follows:
681 \begin{equation}
682   \label{eq:Scp}
683   \Scp[ij] =  \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
684 \end{equation}
685 Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
686 algorithm computes the initial frequencies for all nodes as a ratio between the
687 maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
688 follows:
689 \begin{equation}
690   \label{eq:Fint}
691   F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
692 \end{equation}
693 If the computed initial frequency for a node is not available in the gears of
694 that node, it is replaced by the nearest available frequency.  In
695 Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
696 ascending order and the frequencies of the faster nodes are scaled down
697 according to the computed initial frequency scaling factors.  The resulting new
698 frequencies are highlighted in Figure~\ref{fig:st_freq}.  This set of
699 frequencies can be considered as a higher bound for the search space of the
700 optimal vector of frequencies because selecting higher frequencies
701 than the higher bound will not improve the performance of the application and it
702 will increase its overall energy consumption.  Therefore the algorithm that
703 selects the frequency scaling factors starts the search method from these
704 initial frequencies and takes a downward search direction toward lower
705 frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
706 A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
707 In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances. 
708
709 Therefore, the algorithm iterates on all remaining frequencies, from the higher
710 bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
711 energy consumption and performance and selects the optimal vector of the frequency scaling
712 factors. At each iteration the algorithm determines the slowest node
713 according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
714 while it lowers the frequency of all other nodes by one gear.  The new overall
715 energy consumption and execution time are computed according to the new scaling
716 factors.  The optimal set of frequency scaling factors is the set that gives the
717 highest distance according to the objective function (\ref{eq:max}).
718
719 Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
720 consumed energy for an application running on a homogeneous cluster and a
721  grid platform respectively while increasing the scaling factors. It can
722 be noticed that in a homogeneous cluster the search for the optimal scaling
723 factor should start from the maximum frequency because the performance and the
724 consumed energy decrease from the beginning of the plot. On the other hand, in
725 the  grid platform the performance is maintained at the beginning of the
726 plot even if the frequencies of the faster nodes decrease until the computing
727 power of scaled down nodes are lower than the slowest node. In other words,
728 until they reach the higher bound. It can also be noticed that the higher the
729 difference between the faster nodes and the slower nodes is, the bigger the
730 maximum distance between the energy curve and the performance curve is, which results in bigger energy savings. 
731
732
733 \section{Experimental results}
734 \label{sec.expe}
735 While in~\cite{pdsec2015} the energy  model and the scaling factors selection algorithm were applied to a heterogeneous cluster and  evaluated over the SimGrid simulator~\cite{SimGrid}, 
736 in this paper real experiments were conducted over the grid'5000 platform. 
737
738 \subsection{Grid'5000 architature and power consumption}
739 \label{sec.grid5000}
740 Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via         a special long distance network called RENATER,
741 which is the French National Telecommunication Network for Technology.
742 Each site of the grid is composed of few heterogeneous 
743 computing clusters and each cluster contains many homogeneous nodes. In total,
744 grid'5000 has about  one thousand heterogeneous nodes and eight thousand cores.  In each site,
745 the clusters and their nodes are connected via  high speed local area networks. 
746 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
747
748 Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
749 the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
750 \cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
751  firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $\Pmax[jx]$. The difference between the two measured power consumption represents the 
752 dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
753
754
755 The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
756 \begin{equation}
757   \label{eq:pdyn}
758     \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Pmax[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
759 \end{equation}
760
761 where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
762 $\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured maximum power values, 
763 $\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
764 Therefore, the dynamic power of one core is computed as the difference between the maximum 
765 measured value in maximum powers vector and the minimum measured value in the idle powers vector.
766
767 On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  20\% of dynamic power consumption of the core.
768
769 In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
770
771 Four clusters from the two sites were selected in the experiments: one cluster from 
772 Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
773 Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
774 frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
775 the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
776 selected clusters and are presented in table  \ref{table:grid5000}.
777
778
779 \begin{figure}[!t]
780   \centering
781   \includegraphics[scale=1]{fig/grid5000}
782   \caption{The selected two sites of grid'5000}
783   \label{fig:grid5000}
784 \end{figure}
785
786 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
787 The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
788 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
789
790
791
792
793 \begin{figure}[!t]
794   \centering
795   \includegraphics[scale=0.6]{fig/power_consumption.pdf}
796   \caption{The power consumption by one core from Taurus cluster}
797   \label{fig:power_cons}
798 \end{figure}
799
800
801
802   
803 \begin{table}[!t]
804   \caption{CPUs characteristics of the selected clusters}
805   % title of Table
806   \centering
807   \begin{tabular}{|*{7}{c|}}
808     \hline
809     Cluster     & CPU         & Max   & Min   & Diff. & no. of cores    & dynamic power   \\
810     Name        & model       & Freq. & Freq. & Freq. & per CPU         & of one core     \\
811                 &             & GHz   & GHz   & GHz   &                 &           \\
812     \hline
813     Taurus      & Intel       & 2.3  & 1.2  & 0.1     & 6               & \np[W]{35} \\
814                 & Xeon        &       &       &       &                 &            \\
815                 & E5-2630     &       &       &       &                 &            \\         
816     \hline
817     Graphene    & Intel       & 2.53  & 1.2   & 0.133 & 4               & \np[W]{23} \\
818                 & Xeon        &       &       &       &                 &            \\
819                 & X3440       &       &       &       &                 &            \\    
820     \hline
821     Griffon     & Intel       & 2.5   & 2     & 0.5   & 4               & \np[W]{46} \\
822                 & Xeon        &       &       &       &                 &            \\
823                 & L5420       &       &       &       &                 &            \\  
824     \hline
825     Graphite    & Intel       & 2     & 1.2   & 0.1   & 8               & \np[W]{35} \\
826                 & Xeon        &       &       &       &                 &            \\
827                 & E5-2650     &       &       &       &                 &            \\  
828     \hline
829   \end{tabular}
830   \label{table:grid5000}
831 \end{table} 
832
833
834
835 \subsection{The experimental results of the scaling algorithm}
836 \label{sec.res}
837 In this section, the results of the application of the scaling factors selection algorithm \ref{HSA} 
838 to the NAS parallel benchmarks are presented. 
839
840 As mentioned previously, the experiments 
841 were conducted over two sites of grid'5000,  Lyon and Nancy sites. 
842 Two scenarios were considered while selecting the clusters from these two sites :
843 \begin{itemize}
844 \item In the first scenario, nodes from two sites and three heterogeneous clusters were selected. The two sites are connected 
845  via a long distance network.
846 \item In the second scenario nodes from three clusters that are located in one site, Nancy site.  
847 \end{itemize}
848
849 The main reason 
850 behind using these two scenarios is to evaluate the influence of long distance communications (higher latency) on the performance of the 
851 scaling factors selection algorithm. Indeed, in the first scenario the computations to communications ratio 
852 is very low due to the higher communication times which reduces the effect of DVFS operations.
853
854 The NAS parallel benchmarks are executed over 
855 16 and 32 nodes for each scenario. The number of participating computing nodes form each cluster 
856 are different because all the selected clusters do not have the same available number of nodes and all benchmarks do not require the same number of computing nodes.
857 Table \ref{tab:sc} shows the number of nodes used from each cluster for each scenario. 
858
859 \begin{table}[h]
860
861 \caption{The different clusters scenarios}
862 \centering
863 \begin{tabular}{|*{4}{c|}}
864 \hline
865 \multirow{2}{*}{Scenario name}        & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} 
866                                       & Cluster & Site           & No. of  nodes     \\ 
867 \hline
868 \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon                & 5                      \\ \cline{2-4} 
869                                       & Graphene  & Nancy             & 5                      \\ \cline{2-4} 
870                                       & Griffon       & Nancy        & 6                      \\ 
871 \hline
872 \multirow{3}{*}{Tow sites / 32 nodes} & Taurus  & Lyon               & 10                     \\ \cline{2-4} 
873                                       & Graphene  & Nancy             & 10                     \\ \cline{2-4} 
874                                       & Griffon     &Nancy           & 12                     \\ 
875 \hline
876 \multirow{3}{*}{One site / 16 nodes}  & Graphite    & Nancy            & 4                      \\ \cline{2-4} 
877                                       & Graphene     & Nancy           & 6                      \\ \cline{2-4} 
878                                       & Griffon         & Nancy        & 6                      \\ 
879 \hline
880 \multirow{3}{*}{One site / 32 nodes}  & Graphite   & Nancy             & 4                      \\ \cline{2-4} 
881                                       & Graphene      & Nancy          & 12                     \\ \cline{2-4} 
882                                       & Griffon          & Nancy       & 12                       \\ 
883 \hline
884 \end{tabular}
885  \label{tab:sc}
886 \end{table}
887
888 \begin{figure}
889   \centering
890   \includegraphics[scale=0.5]{fig/eng_con_scenarios.eps}
891   \caption{The energy consumptions of NAS benchmarks over different scenarios }
892   \label{fig:eng_sen}
893 \end{figure}
894
895
896
897 \begin{figure}
898   \centering
899   \includegraphics[scale=0.5]{fig/time_scenarios.eps}
900   \caption{The execution times of NAS benchmarks over different scenarios }
901   \label{fig:time_sen}
902 \end{figure}
903
904 The NAS parallel benchmarks are executed over these two platforms
905  with different number of nodes, as in Table \ref{tab:sc}. 
906 The overall energy consumption of all the benchmarks solving the class D instance and
907 using the proposed frequency selection algorithm is measured 
908 using the equation of the reduced energy consumption, equation 
909 (\ref{eq:energy}). This model uses the measured dynamic and static 
910 power values  showed in Table \ref{table:grid5000}. The execution
911 time is measured for all the benchmarks over these different scenarios.  
912
913 The energy consumptions  and the execution times for all the benchmarks are 
914 presented in the plots \ref{fig:eng_sen} and \ref{fig:time_sen} respectively. 
915
916 For the majority of the benchmarks, the energy consumed while executing  the NAS benchmarks over one site scenario 
917 for  16 and 32 nodes is lower than the energy consumed while using two sites. 
918 The long distance communications between the two distributed sites increase the idle time, which leads to more static energy consumption. 
919
920 The execution times of these benchmarks 
921 over one site with 16 and 32 nodes are also lower when  compared to those of the  two sites 
922 scenario. Moreover, most of the benchmarks running over the one site scenario their execution times  are approximately divided by two  when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).  
923
924 However, the  execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly affected 
925  in both scenarios. Even when the number of nodes is doubled. On the other hand, the communications of the rest of the benchmarks increases when using long distance communications between two sites or increasing the number of computing nodes.
926
927 \begin{figure}
928   \centering
929   \includegraphics[scale=0.5]{fig/eng_s.eps}
930   \caption{The energy saving of NAS benchmarks over different scenarios }
931   \label{fig:eng_s}
932 \end{figure}
933
934
935 \begin{figure}
936   \centering
937   \includegraphics[scale=0.5]{fig/per_d.eps}
938   \caption{The performance degradation of NAS benchmarks over different scenarios }
939   \label{fig:per_d}
940 \end{figure}
941
942
943 \begin{figure}
944   \centering
945   \includegraphics[scale=0.5]{fig/dist.eps}
946   \caption{The tradeoff distance of NAS benchmarks over different scenarios }
947   \label{fig:dist}
948 \end{figure}
949
950 The energy saving percentage is computed as the ratio between the reduced 
951 energy consumption, equation (\ref{eq:energy}), and the original energy consumption,
952 equation (\ref{eq:eorginal}), for all benchmarks as in figure \ref{fig:eng_s}. 
953 This figure shows that the energy saving percentages of one site scenario for
954 16 and 32 nodes are bigger than those of the two sites scenario which is due
955 to the higher  computations to communications ratio in the first scenario   
956 than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computations times are bigger than the communication times which 
957 results in  a lower energy consumption. Indeed, the dynamic  consumed power
958 is exponentially related to the CPU's frequency value. On the other side, the increase in the number of computing nodes can 
959 increase the communication times and thus produces less energy saving depending on the 
960 benchmarks being executed. The results of the benchmarks CG, MG, BT and FT show more 
961 energy saving percentage in one site scenario when executed over 16 nodes comparing to 32 nodes. While, LU and SP consume more energy with 16 nodes than 32 in one site  because their computations to communications ratio is not affected by the increase of the number of local communications. 
962
963
964 The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites 
965 scenario, except for the   EP benchmark which has  no communications. Therefore, the energy saving percentage of this benchmark is 
966 dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example 
967 in the one site scenario, the graphite cluster is selected but in the two sits scenario 
968 this cluster is replaced with Taurus cluster which is more powerful. 
969 Therefore, the energy saving of EP benchmarks are bigger in the two sites scenario due 
970 to the higher maximum difference between the computing powers of the nodes. 
971
972 In fact, high differences between the nodes' computing powers make the proposed frequencies selecting  
973 algorithm  select smaller frequencies for the powerful nodes which 
974 produces less energy consumption and thus more energy saving.
975 The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
976
977
978 Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios.
979 The performance degradation percentage for the benchmarks running on two sites  with
980 16 or 32  nodes is on average equal to 8\% or 4\% respectively. 
981 For this scenario, the proposed scaling algorithm selects smaller frequencies for the executions with 32 nodes  without significantly degrading their performance because the communication times are higher with 32 nodes which results in smaller  computations to communications ratio.  On the other hand, the performance degradation percentage  for the benchmarks running  on one site  with
982 16 or 32  nodes is on average equal to 3\% or 10\% respectively. In opposition to the two sites scenario, when the number of computing nodes is increased in the one site scenario, the performance degradation percentage is increased. Therefore, doubling the number of computing 
983 nodes when the communications occur in high speed network does not decrease the computations to 
984 communication ratio. 
985
986 The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to 
987 the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its 
988 performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
989 The rest of the benchmarks showed different performance degradation percentages, which decrease
990 when the communication times increase and vice versa.
991
992 Figure \ref{fig:dist} presents the  distance percentage between the energy saving  and the performance degradation for each benchmark  over both  scenarios. The tradeoff distance percentage can be 
993 computed as in equation \ref{eq:max}. The one site scenario with 16 nodes gives the best energy and performance 
994 tradeoff, on average it is equal to  26\%. The one site scenario using both 16 and 32 nodes had better energy and performance 
995 tradeoff comparing to the two sites scenario  because the former has high speed local communications 
996 which increase the computations to communications ratio  and the latter uses long distance communications which decrease this ratio. 
997
998
999  Finally, the best energy and performance tradeoff depends on all of the following:
1000 1) the computations to communications ratio when there are  communications and slack times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity of the consumed  static and dynamic powers of the nodes.
1001
1002
1003
1004
1005 \subsection{The experimental results of multi-cores clusters}
1006 \label{sec.res-mc}
1007 The  clusters of grid'5000 have different number of cores embedded in their nodes
1008 as shown in Table \ref{table:grid5000}. The cores of each node can exchange 
1009 data via the shared memory \cite{rauber_book}. In 
1010 this section, the proposed scaling algorithm is evaluated over the grid'5000 grid while using multi-core nodes 
1011 selected according to the two  platform scenarios described in the section \ref{sec.res}.
1012 The two platform scenarios, the two sites and one site scenarios, use  32 
1013 cores from multi-cores nodes instead of 32 distinct nodes. For example if 
1014 the participating number of cores from a certain cluster is equal to 12, 
1015 in the multi-core scenario the selected nodes is equal to 3 nodes while using 
1016 4 cores from each node. The platforms with one  
1017 core per node and  multi-cores nodes are  shown in Table \ref{table:sen-mc}. 
1018 The energy consumptions and execution times of running the NAS parallel 
1019 benchmarks, class D, over these four different scenarios are presented 
1020 in the figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
1021
1022 The execution times for most of  the NAS  benchmarks are higher over the one site multi-cores per node scenario 
1023  than the execution time of those running over one site single core per node  scenario. Indeed,  
1024    the communication times  are higher in the one site multi-cores scenario than in the latter scenario because all the cores of a node  share  the same node network link which can be  saturated when running communication bound applications. 
1025    
1026  \textcolor{blue}{On the other hand,  the execution times for most of the NAS benchmarks  are lower over 
1027 the two sites  multi-cores scenario than those over the two sites one core scenario.   ???????
1028 }
1029
1030 The experiments showed that for most of the NAS benchmarks and between the four scenarios,  
1031 the one site one core scenario gives the best execution times because the communication times are the lowest. 
1032 Indeed, in this scenario each core has a dedicated network link and all the communications are local.  
1033 Moreover, the energy consumptions of the NAS benchmarks are lower over the 
1034 one site one core scenario  than over the one site multi-cores scenario because 
1035 the first scenario had less execution time than the latter which results in less static energy being consumed.
1036
1037 The computations to communications ratios of the NAS benchmarks are higher over 
1038 the one site one core scenario  when compared to the ratios of the other scenarios. 
1039 More energy reduction was achieved when this ratio is increased because the proposed scaling algorithm selects smaller frequencies that decrease the dynamic power consumption. 
1040
1041   \textcolor{blue}{ Whereas, the energy consumption in the two sites one core scenario is higher than the energy consumption of the two sites multi-core scenario. This is according to the increase in the execution time of the two sites one core scenario. }
1042
1043
1044 These experiments also showed that the energy 
1045 consumption and the execution times of the EP and MG benchmarks do not change significantly over these four 
1046 scenarios  because there are no or small communications,  
1047 which could increase or decrease the static power consumptions. Contrary to EP and MG, the  energy consumptions 
1048 and the execution times of the rest of the  benchmarks  vary according to the  communication times that are different from one scenario to the other.
1049
1050
1051 The energy saving percentages of all NAS benchmarks running over these four scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that  the energy saving percentages   over the two sites multi-cores scenario 
1052 and over the two sites one core scenario are on average  equal to 22\% and 18\%
1053 respectively. The energy saving percentages   are higher in the former scenario because  its computations to communications  ratio is higher than the ratio of the latter scenario  as mentioned previously.
1054
1055 In contrast, in the one site one 
1056 core and one site multi-cores scenarios the energy saving percentages 
1057 are approximately equivalent, on average they are up to 25\%. In both scenarios there 
1058 are a small difference  in the computations to communications ratios, which leads 
1059 the proposed scaling algorithm to select similar frequencies for both scenarios.  
1060
1061 The performance degradation percentages of the NAS benchmarks are presented in
1062 figure \ref{fig:per-d-mc}. It shows that the performance degradation percentages for the NAS benchmarks are higher over the two sites 
1063 multi-cores scenario than over the  two sites  one core scenario, equal on average to 7\% and 4\% respectively. 
1064 Moreover, using the two sites multi-cores scenario increased 
1065 the computations to communications ratio, which may increase 
1066 the overall execution time  when the proposed scaling algorithm is applied and the frequencies scaled down.  
1067
1068
1069 When the benchmarks are executed  over the one 
1070 site one core scenario, their performance degradation percentages are equal  on average
1071 to 10\% and are higher than those executed over the one site multi-cores scenario, 
1072 which on average is equal to 7\%. 
1073
1074 \textcolor{blue}{
1075 The performance degradation percentages over one site multi-cores is lower because  the computations to communications ratio is decreased. Therefore, selecting bigger 
1076 frequencies by the scaling algorithm are proportional to this ratio, and thus the execution time do not increase significantly.}
1077
1078
1079 The tradeoff distance percentages of the NAS 
1080 benchmarks over all scenarios are presented in the figure \ref{fig:dist-mc}.
1081 These  tradeoff distance percentages are used to verify which scenario is the best in terms of energy reduction and performance. The figure shows that using muti-cores in both of the one site and two sites scenarios gives bigger  tradeoff distance percentages, on overage equal to 17.6\% and 15.3\% respectively, than using one core per node in both of one site and two sites scenarios,  on average  equal to 14.7\% and 13.3\% respectively. 
1082
1083 \begin{table}[]
1084 \centering
1085 \caption{The multicores scenarios}
1086
1087 \begin{tabular}{|*{4}{c|}}
1088 \hline
1089 Scenario name                          & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of  nodes\\ in each cluster\end{tabular} & 
1090                                        \begin{tabular}[c]{@{}c@{}}No. of  cores\\ for each node\end{tabular}  \\ \hline
1091 \multirow{3}{*}{Two sites/ one core}   & Taurus       & 10              & 1                   \\ \cline{2-4}
1092                                        & Graphene     & 10              & 1                   \\ \cline{2-4}
1093                                        & Griffon      & 12              & 1                   \\ \hline
1094 \multirow{3}{*}{Two sites/ multicores} & Taurus       & 3               & 3 or 4              \\ \cline{2-4}
1095                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
1096                                        & Griffon      & 3               & 4                   \\ \hline
1097 \multirow{3}{*}{One site/ one core}    & Graphite     & 4               & 1                   \\  \cline{2-4}
1098                                        & Graphene     & 12              & 1                   \\  \cline{2-4}
1099                                        & Griffon      & 12              & 1                   \\ \hline
1100 \multirow{3}{*}{One site/ multicores}  & Graphite     & 3               & 3 or 4              \\  \cline{2-4}
1101                                        & Graphene     & 3               & 3 or 4              \\  \cline{2-4}
1102                                        & Griffon      & 3               & 4                   \\ \hline
1103 \end{tabular}
1104 \label{table:sen-mc}
1105 \end{table}
1106
1107 \begin{figure}
1108   \centering
1109   \includegraphics[scale=0.5]{fig/eng_con.eps}
1110   \caption{Comparing the  energy consumptions of running NAS benchmarks over one core and multicores scenarios }
1111   \label{fig:eng-cons-mc}
1112 \end{figure}
1113
1114
1115   \begin{figure}
1116   \centering
1117   \includegraphics[scale=0.5]{fig/time.eps}
1118   \caption{Comparing the  execution times of running NAS benchmarks over one core and multicores scenarios }
1119   \label{fig:time-mc}
1120 \end{figure}
1121
1122  \begin{figure}
1123   \centering
1124   \includegraphics[scale=0.5]{fig/eng_s_mc.eps}
1125   \caption{The energy saving of running NAS benchmarks over one core and multicores scenarios }
1126   \label{fig:eng-s-mc}
1127 \end{figure}
1128
1129 \begin{figure}
1130   \centering
1131   \includegraphics[scale=0.5]{fig/per_d_mc.eps}
1132   \caption{The performance degradation of running NAS benchmarks over one core and multicores scenarios }
1133   \label{fig:per-d-mc}
1134 \end{figure}
1135
1136 \begin{figure}
1137   \centering
1138   \includegraphics[scale=0.5]{fig/dist_mc.eps}
1139   \caption{The tradeoff distance of running NAS benchmarks over one core and multicores scenarios }
1140   \label{fig:dist-mc}
1141 \end{figure}
1142
1143 \subsection{Experiments with different static and dynamic powers consumption scenarios}
1144 \label{sec.pow_sen}
1145
1146 In section \ref{sec.grid5000}, since it was not possible to measure the static power consumed by a CPU,   the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too. 
1147
1148 The aim of  this section is to evaluate the scaling algorithm while assuming different values of static powers. 
1149 In addition to the previously used  percentage of static power, two new static power ratios,  10\% and 30\% of the measured dynamic power of the core, are used in this section.
1150 The experiments have been executed with these two new static power scenarios  over the one site one core per node scenario.
1151 In these experiments, the class D of the NAS parallel benchmarks are executed over Nancy's site. 16 computing nodes from the three clusters, Graphite, Graphene and Griffon, where used in this experiment.  
1152
1153  \begin{figure}
1154   \centering
1155   \includegraphics[scale=0.5]{fig/eng_pow.eps}
1156   \caption{The energy saving percentages for NAS benchmarks of the three power scenario}
1157   \label{fig:eng-pow}
1158 \end{figure}
1159
1160 \begin{figure}
1161   \centering
1162   \includegraphics[scale=0.5]{fig/per_pow.eps}
1163   \caption{The performance degradation percentages for NAS benchmarks of the three power scenario}
1164   \label{fig:per-pow}
1165 \end{figure}
1166
1167
1168 \begin{figure}
1169   \centering
1170   \includegraphics[scale=0.5]{fig/dist_pow.eps}
1171   \caption{The tradeoff distance for NAS benchmarks of the three power scenario}
1172   \label{fig:dist-pow}
1173 \end{figure}
1174
1175 \begin{figure}
1176   \centering
1177   \includegraphics[scale=0.47]{fig/three_scenarios.pdf}
1178   \caption{Comparing the selected frequency scaling factors of MG benchmark for three static power scenarios}
1179   \label{fig:fre-pow}
1180 \end{figure}
1181
1182
1183 The energy saving percentages of the NAS benchmarks with the three static power scenarios are presented 
1184 in figure \ref{fig:eng_sen}. This figure shows that the  10\% of static power scenario 
1185 gives the biggest energy saving percentages in comparison to the 20\% and 30\% static power 
1186 scenarios. The small value of the static power consumption makes the proposed 
1187 scaling algorithm  select smaller frequencies for the CPUs. 
1188 These smaller frequencies reduce the dynamic energy consumption more than increasing the consumed static energy which gives             less overall energy consumption. 
1189 The energy saving percentages of the 30\% static power scenario is the smallest between the other scenarios, because the scaling algorithm selects bigger frequencies for the CPUs which increases the energy consumption. Figure \ref{fig:fre-pow} demonstrates that the proposed scaling algorithm selects   the best frequency scaling factors   according to the static power consumption ratio being used.
1190
1191 The performance degradation percentages are presented in the figure \ref{fig:per-pow}.
1192 The 30\% static power scenario had less performance degradation percentage  because the scaling algorithm
1193 had  selected big frequencies for the CPUs. While, 
1194 the inverse happens in the 10\% and 20\% scenarios because the scaling algorithm had selected  CPUs' frequencies smaller than those of the 30\% scenario. The tradeoff distance percentage for the NAS benchmarks with these three static power scenarios 
1195 are presented in the figure \ref{fig:dist}. 
1196 It shows that the best  tradeoff
1197 distance percentage is obtained with  the  10\% static power scenario  and this percentage 
1198 is decreased for the other two scenarios because the scaling algorithm had selected different frequencies according to the static power values.
1199
1200 In the EP benchmark, the energy saving, performance degradation and tradeoff 
1201 distance percentages for the these static power scenarios are not significantly different because there is no communication in this benchmark. Therefore, the static power is only consumed during computation and   the proposed scaling algorithm selects similar frequencies for the three scenarios.  On the other hand,  for the rest of the benchmarks,  the scaling algorithm  selects  the values of the frequencies according to the communication times of each benchmark because the static energy consumption increases  proportionally to the  communication times. 
1202
1203
1204  
1205 \subsection{The comparison between the proposed frequencies selecting algorithm and the energy and delay product algorithm}
1206 \label{sec.compare_EDP}
1207
1208 Finding the frequencies that gives the best tradeoff between the energy consumption and the performance for a parallel 
1209 application is not a trivial task.  Many algorithms have been proposed to tackle this problem.  
1210 In this section, the proposed frequencies selecting algorithm is compared to well known  energy and delay product method, $EDP=energy \times delay$, that have been used by many researchers  \cite{EDP_for_multi_processors,Energy_aware_application_scheduling,Exploring_Energy_Performance_TradeOffs}. 
1211 This method  was also used by Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS} where they select the frequencies that minimize the EDP product and apply them with DVFS operations to  the multi-cores 
1212 architecture. Their online algorithm predicts the energy consumption and execution time of a processor before using the EDP method.
1213
1214 To fairly compare the proposed frequencies scaling algorithm to  Spiliopoulos et al. algorithm, called Maxdist and EDP respectively, both algorithms use the same energy model,  equation \ref{eq:energy} and
1215 execution time model, equation \ref{eq:perf}, to predict the energy consumption and the execution time for each computing node.
1216 Moreover, both algorithms start the search space from the upper bound computed as in equation   \ref{eq:Fint}.
1217 Finally, the resulting EDP algorithm is an exhaustive search algorithm that tests all the possible frequencies, starting from the initial frequencies (upper bound), 
1218 and selects the vector of frequencies that minimize the EDP product.
1219
1220 Both algorithms were applied to the class D of the NAS benchmarks over 16 nodes.
1221 The participating computing nodes are distributed  according to the two scenarios described in  section \ref{sec.res}. 
1222 The experimental results, the energy saving, performance degradation and tradeoff distance percentages, are 
1223 presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively. 
1224 \begin{figure}
1225   \centering
1226   \includegraphics[scale=0.5]{fig/edp_eng}
1227   \caption{Comparing of the energy saving for the proposed method with EDP method}
1228   \label{fig:edp-eng}
1229 \end{figure}
1230 \begin{figure}
1231   \centering
1232   \includegraphics[scale=0.5]{fig/edp_per}
1233   \caption{Comparing of the performance degradation for the proposed method with EDP method}
1234   \label{fig:edp-perf}
1235 \end{figure}
1236 \begin{figure}
1237   \centering
1238   \includegraphics[scale=0.5]{fig/edp_dist}
1239   \caption{Comparing of the tradeoff distance for the proposed method with EDP method}
1240   \label{fig:edp-dist}
1241 \end{figure}
1242 \textcolor{blue}{As shown form these figures, the proposed frequencies selection algorithm, Maxdist, outperform the EDP algorithm in term of energy and performance for all of the benchmarks executed over the two scenarios. 
1243 Generally, the proposed algorithm gives better results for all benchmarks because it is
1244 optimized the distance between the energy saving and the performance degradation in the same time. 
1245 Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
1246 Whereas, the EDP algorithm gives some times negative tradeoff values for some benchmarks in the two sites scenarios.
1247 These negative tradeoff values mean that the performance degradation percentage is higher than energy saving percentage.
1248 The higher positive value of the tradeoff distance percentage mean that the  energy saving percentage is much higher than the performance degradation percentage. 
1249 The time complexity of both Maxdist and EDP algorithms are $O(N \cdot M \cdot F)$ and 
1250 $O(N \cdot M \cdot F^2)$ respectively. Where $N$ is the number of the clusters, $M$ is the number of nodes and $F$ is the 
1251 maximum number of available frequencies. The proposed algorithm, Maxdist, has selected the best frequencies in a small execution time, 
1252 on average is equal to  0.01 $ms$, when it is executed over 32 nodes distributed between Nancy and Lyon sites.
1253 While the EDP algorithm was slower than Maxdist algorithm by ten times over the same number of nodes and same distribution, its execution time on average 
1254 is equal to 0.1 $ms$. 
1255 }
1256
1257
1258 \section{Conclusion}
1259 \label{sec.concl}
1260 \textcolor{blue}{
1261 This paper has been  presented a new online frequencies selection algorithm.
1262 It works based on objective function that maximized the tradeoff distance 
1263 between the predicted energy consumption and the predicted execution time of the distributed 
1264 iterative applications running over heterogeneous grid. The algorithm selects the best vector of the 
1265 frequencies which maximized the objective function has been used. A new energy model 
1266 used by the proposed algorithm for measuring and predicting the energy consumption 
1267 of the distributed iterative message passing application running over grid architecture.
1268 To evaluate the proposed method on a real heterogeneous grid platform, it was applied on the  
1269 NAS parallel benchmarks  class D instance  and executed over grid'5000 testbed platform. 
1270 The experimental results showed that the algorithm saves the energy consumptions on average 
1271 for all NAS benchmarks up to 30\%  while gives only 3\% percentage on average for the performance 
1272 degradation for the same instance. The algorithm also selecting different frequencies according to the 
1273 computations and communication times ratio, and according to the values of the static and measured dynamic power of the CPUs. The computations to communications ratio was varied between different scenarios have been used, concerning to the distribution of the computing nodes between different clusters' sites and using one core or multi-cores per node.
1274 Finally, the proposed algorithm was compared to other algorithm which it
1275 used the will known energy and delay product as an objective function. The comparison results showed 
1276 that the proposed algorithm outperform the other one in term of energy-time tradeoff.
1277 In the near future, we would like to develop a similar method that is adapted to
1278 asynchronous iterative applications where each task does not
1279 wait for other tasks to finish their works. The development of
1280 such a method might require a new energy model because the
1281 number of iterations is not known in advance and depends on
1282 the global convergence of the iterative system.
1283 }
1284
1285
1286 \section*{Acknowledgment}
1287
1288 This work  has been  partially supported by  the Labex ACTION  project (contract
1289 ``ANR-11-LABX-01-01'').  Computations  have been performed  on the supercomputer
1290 facilities  of the  Mésocentre de  calcul de  Franche-Comté. As  a  PhD student,
1291 Mr. Ahmed  Fanfakh, would  like to  thank the University  of Babylon  (Iraq) for
1292 supporting his work.
1293
1294 % trigger a \newpage just before the given reference
1295 % number - used to balance the columns on the last page
1296 % adjust value as needed - may need to be readjusted if
1297 % the document is modified later
1298 %\IEEEtriggeratref{15}
1299
1300 \bibliographystyle{IEEEtran}
1301 \bibliography{IEEEabrv,my_reference}
1302 \end{document}
1303
1304 %%% Local Variables:
1305 %%% mode: latex
1306 %%% TeX-master: t
1307 %%% fill-column: 80
1308 %%% ispell-local-dictionary: "american"
1309 %%% End:
1310
1311 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
1312 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
1313 % LocalWords:  de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
1314 %  LocalWords:  Spiliopoulos scalability