-algorithm to selects smaller frequencies in the nodes of the higher computing power,
-producing less energy consumption and thus more energy saving.
-The best energy saving percentage was for one site scenario with 16 nodes, on average it
-saves the energy consumption up to 30\%.
-
-Figure \ref{fig:per_d}, presents the performance degradation percentages for all benchmarks.
-It shows that the performance degradation percentages of the one site scenario with
-32 nodes, on average equal to 10\%, is higher than the performance degradation of one 16 nodes,
-which on average equal to 3\%. This because selecting smaller frequencies in the one site scenarios,
+algorithm select smaller frequencies for the powerful nodes which
+produces less energy consumption and thus more energy saving.
+The best energy saving percentage was obtained in the one site scenario with 16 nodes, The energy consumption was on average reduced up to 30\%.
+
+
+Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks.
+The performance degradation percentage for the benchmarks running on one site with
+16 or 32 nodes is on average equal to 3\% or 10\% respectively.
+
+ \textcolor{red}{please correct the following paragraph because I do not understand it at all! Stop using we, this because, effected, while, ...}
+
+
+
+ This because selecting smaller frequencies in the one site scenarios,