-In the NAS benchmarks there are some programs executed on different number of nodes. The benchmarks CG, MG, LU and FT executed on 2 to a power of (1, 2, 4, 8, ...) of nodes. The other benchmarks such as BT and SP executed on 2 to a power of (1, 2, 4, 9, ...) of nodes. We are take the average of energy saving, performance degradation and distances for all results of NAS benchmarks. The average of these three objectives are plotted to the number of nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}). In CG, MG, LU, and FT benchmarks the average of energy saving is decreased when the number of nodes is increased due to the increasing in the communication times as mentioned before. Thus, the average of distances (our objective function) is decreased linearly with energy saving while keeping the average of performance degradation the same. In BT and SP benchmarks, the average of energy saving is not decreased significantly compare to other benchmarks when the number of nodes is increased. Nevertheless, the average of performance degradation approximately still the same ratio. This difference is depends on the characteristics of the benchmarks such as the computation to communication ratio that has.
-
-\subsection{The results for different powers scenarios}
-The results of the previous section are obtained using a percentage of 80\% for dynamic power and 20\% for static power of total power consumption. In this section we are change these ratio by using two others scenarios. Because is interested to measure the ability of the proposed algorithm to changes it behaviour when these power ratios are changed. In fact, we are use two different scenarios for dynamic and static power ratios in addition to the previous scenario in section (\ref{sec.res}). Therefore, we have three different scenarios for three different dynamic and static power ratios refer to as: 70\%-20\%, 80\%-20\% and 90\%-10\% scenario. The results of these scenarios running NAS benchmarks class C on 8 or 9 nodes are place in the tables (\ref{table:res_s1} and \ref{table:res_s2}).
+In the NAS benchmarks there are some programs executed on different number of
+nodes. The benchmarks CG, MG, LU and FT executed on 2 to a power of (1, 2, 4, 8,
+\dots{}) of nodes. The other benchmarks such as BT and SP executed on 2 to a
+power of (1, 2, 4, 9, \dots{}) of nodes. We are take the average of energy
+saving, performance degradation and distances for all results of NAS
+benchmarks. The average of values of these three objectives are plotted to the number of
+nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}). In CG, MG, LU, and
+FT benchmarks the average of energy saving is decreased when the number of nodes
+is increased because the communication times is increased as mentioned
+before. Thus, the average of distances (our objective function) is decreased
+linearly with energy saving while keeping the average of performance degradation approximately is
+the same. In BT and SP benchmarks, the average of the energy saving is not decreased
+significantly compare to other benchmarks when the number of nodes is
+increased. Nevertheless, the average of performance degradation approximately
+still the same ratio. This difference is depends on the characteristics of the
+benchmarks such as the computation to communication ratio that has.
+
+\subsection{The results for different power consumption scenarios}
+
+The results of the previous section are obtained using a percentage of 80\% for
+dynamic power and 20\% for static power of the total power consumption of a CPU. In this
+section we are change these ratio by using two others power scenarios. Because is
+interested to measure the ability of the proposed algorithm when these power ratios are changed.
+In fact, we are used two different scenarios for dynamic and static power ratios in addition to the previous
+scenario in section (\ref{sec.res}). Therefore, we have three different
+scenarios for three different dynamic and static power ratios refer to these as:
+70\%-20\%, 80\%-20\% and 90\%-10\% scenario respectively. The results of these scenarios
+running the NAS benchmarks class C on 8 or 9 nodes are place in the tables
+(\ref{table:res_s1} and \ref{table:res_s2}).