]> AND Private Git Repository - mpi-energy2.git/blobdiff - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
adding the abstract
[mpi-energy2.git] / Heter_paper.tex
index 755cef735e5b50729d631c406fc00f1c65ea6e3e..65232f04f870ef03b4b48f7e9cf6cc99481360b1 100644 (file)
@@ -5,6 +5,7 @@
 \usepackage[english]{babel}
 \usepackage{algpseudocode}
 \usepackage{graphicx}
 \usepackage[english]{babel}
 \usepackage{algpseudocode}
 \usepackage{graphicx}
+\usepackage{algorithm}
 \usepackage{subfig}
 \usepackage{amsmath}
 
 \usepackage{subfig}
 \usepackage{amsmath}
 
 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
 \newcommand{\Tmax}{\Xsub{T}{max}}
 \newcommand{\Tnew}{\Xsub{T}{New}}
 \newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
 \newcommand{\Tmax}{\Xsub{T}{max}}
 \newcommand{\Tnew}{\Xsub{T}{New}}
-\newcommand{\Told}{\Xsub{T}{Old}}
+\newcommand{\Told}{\Xsub{T}{Old}} 
+\begin{document} 
 
 
-\begin{document}
-
-\title{Energy Consumption Reduction in heterogeneous architecture using DVFS}
-
-\author{%
+\title{Energy Consumption Reduction in a Heterogeneous Architecture Using DVFS}
+\author{% 
   \IEEEauthorblockN{%
     Jean-Claude Charr,
     Raphaël Couturier,
     Ahmed Fanfakh and
     Arnaud Giersch
   \IEEEauthorblockN{%
     Jean-Claude Charr,
     Raphaël Couturier,
     Ahmed Fanfakh and
     Arnaud Giersch
-  }
+  } 
   \IEEEauthorblockA{%
     FEMTO-ST Institute\\
     University of Franche-Comté\\
   \IEEEauthorblockA{%
     FEMTO-ST Institute\\
     University of Franche-Comté\\
 \maketitle
 
 \begin{abstract}
 \maketitle
 
 \begin{abstract}
-  
+Green computing emphasizes the importance of energy conservation, minimizing the negative impact 
+on the environment while achieving high performance and minimizing operating costs. So, energy reduction 
+process in a high performance clusters it can be archived using dynamic voltage and frequency 
+scaling (DVFS) technique, through reducing the frequency of a CPU. Using DVFS to lower levels 
+result in a high increase in performance degradation ratio. Therefore selecting the best frequencies 
+must give the best possible tradeoff between the energy and the performance of parallel program.
+
+In this paper we present a new online heterogeneous scaling algorithm that selects the best vector 
+of frequency scaling factors. These factors give the best tradeoff between the energy saving and the
+performance degradation. The algorithm has small overhead and works without training and profiling.
+We developed a new energy model for distributed iterative application running on heterogeneous cluster. 
+The proposed algorithm experimented  on Simgrid simulator that applying the NAS parallel benchmarks.
+It reduces the energy consumption up to 35\% while limits the performance degradation as much as possible.
 \end{abstract}
 
 \section{Introduction}
 \label{sec.intro}
 \end{abstract}
 
 \section{Introduction}
 \label{sec.intro}
-
+Modern processors continue increasing in performance, 
+the CPUs constructors are competing to achieve maximum number 
+of floating point operations per second (FLOPS). 
+Thus, the energy consumption and the heat dissipation are increased 
+drastically according to this increase. Because the number of FLOPS 
+is more related to the power consumption of a CPU
+~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}.  
+As an example of the most power hungry cluster, Tianhe-2 became in 
+the top of the Top500 list in June 2014 \cite{TOP500_Supercomputers_Sites}. 
+It has more than 3 millions of cores and consumed more than 17.8 megawatts. 
+Moreover, according to the U.S. annual energy outlook 2014 
+\cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour 
+was approximately equal to \$70. 
+Therefore, we can consider the price of the energy consumption for the 
+Tianhe-2 platform is approximately more than \$10 millions  for 
+one year. For this reason, the heterogeneous clusters must be offer more 
+energy efficiency due to the increase in the energy cost and the environment 
+influences. Therefore, a green computing clusters with maximum number of 
+FLOPS per watt are required nowadays. For example, the GSIC center of Tokyo, 
+became the top of the Green500 list in June 2014 \cite{Green500_List}. 
+This heterogeneous platform has more than four thousand of  MFLOPS per watt. Dynamic 
+voltage and frequency scaling (DVFS) is a process used widely to reduce the energy 
+consumption of the processor. In heterogeneous clusters enabled DVFS, many researchers 
+used DVFS  in a different ways. DVFS can be minimized the energy consumption 
+but it leads to a disadvantage due to the increase in performance degradation. 
+Therefore,  researchers used different optimization strategies to overcame 
+this problem. The best tradeoff relation between the energy reduction and 
+performance degradation ratio is became a key challenges in a heterogeneous 
+platforms. In this paper we are propose a heterogeneous scaling algorithm  
+that selects the optimal vector of the frequency scaling factors for distributed 
+iterative application, producing maximum energy reduction against minimum 
+performance degradation ratio simultaneously. The algorithm has very small 
+overhead, works online and not needs for any training or profiling.  
+
+This paper is organized as follows: Section~\ref{sec.relwork} presents some
+related works from other authors.  Section~\ref{sec.exe} describes how the
+execution time of MPI programs can be predicted.  It also presents an energy
+model for heterogeneous platforms. Section~\ref{sec.compet} presents
+the energy-performance objective function that maximizes the reduction of energy
+consumption while minimizing the degradation of the program's performance.
+Section~\ref{sec.optim} details the proposed heterogeneous scaling algorithm.
+Section~\ref{sec.expe} presents the results of running  the NAS benchmarks on 
+the proposed heterogeneous platform. It also shows the comparison of three 
+different power scenarios and it verifies the precision of the proposed algorithm.  
+Finally, we conclude in Section~\ref{sec.concl} with a summary and some future works.
 
 \section{Related works}
 \label{sec.relwork}
 
 \section{Related works}
 \label{sec.relwork}
-
-
-
-
+Energy reduction process for high performance clusters recently performed using 
+dynamic voltage and frequency scaling (DVFS) technique. DVFS is a technique enabled 
+in modern processors to scaled down both of the voltage and the frequency of 
+the CPU while it is in the computing mode to reduce the energy consumption. DVFS is 
+also  allowed in the graphical processors GPUs, to achieved the same goal. Applying 
+DVFS has a dramatical side effect if it is applied to minimum levels to gain more 
+energy reduction, producing  a high percentage of performance degradations for the 
+parallel applications.  Many researchers used different strategies to solve this 
+nonlinear problem for example in
+~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}, their methods 
+add big overheads to the algorithm to select the suitable frequency.  
+In this paper we  present a method 
+to find the optimal set of frequency scaling factors for heterogeneous cluster to 
+simultaneously optimize both the energy and the execution time  without adding big 
+overhead. This work is developed from our previous work of homogeneous cluster~\cite{Our_first_paper}. 
+Therefore we are interested to present some works that concerned the heterogeneous clusters 
+enabled DVFS. In general, the heterogeneous cluster works fall into two categorizes: 
+GPUs-CPUs heterogeneous clusters and CPUs-CPUs heterogeneous clusters. In GPUs-CPUs 
+heterogeneous clusters some parallel tasks executed on  GPUs and the others executed 
+on  CPUs. As an example of this works, Luley et al.
+~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed  a heterogeneous 
+cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal is to determined the 
+energy efficiency as a function of performance per watt, the best tradeoff is done when the 
+performance per watt function is maximized. In the work of Kia Ma et al.
+~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, they developed a scheduling 
+algorithm to distributed different workloads proportional to the computing power of the node 
+to be executed on CPU or GPU, emphasize all tasks must be finished in the same time. 
+Recently, Rong et al.~\cite{Rong_Effects.of.DVFS.on.K20.GPU}, Their study explain that 
+a heterogeneous clusters enabled DVFS using GPUs and CPUs gave better energy and performance 
+efficiency than other clusters composed of only CPUs. 
+The CPUs-CPUs heterogeneous clusters consist of number of computing nodes  all of the type CPU. 
+Our work in this paper can be classified to this type of the clusters. 
+As an example of these works see  Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling} work, 
+They developed a policy to dynamically assigned the frequency to a heterogeneous cluster. 
+The goal is to minimizing a fixed metric of $energy*delay^2$. Where our proposed method is automatically 
+optimized  the relation between the energy and the delay of the iterative applications. 
+Other works such as Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling}, 
+their algorithm divided the executed tasks into two types: the critical and 
+non critical tasks. The algorithm scaled down the frequency of the non critical tasks 
+as function to the  amount of the slack and communication times that 
+have with maximum of performance degradation percentage less than 10\%. In our method there is no 
+fixed bounds for performance degradation percentage and the bound is dynamically computed 
+according to the energy and the performance tradeoff relation of the executed application. 
+There are some approaches used a heterogeneous cluster composed from two different types 
+of Intel and AMD processors such as~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS} 
+and \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, they predicated  both the energy 
+and the performance for each frequency gear, then the algorithm selected the best gear that gave 
+the best tradeoff. In contrast our algorithm works over a heterogeneous  platform composed of 
+four different types of processors. Others approaches such as 
+\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, 
+they are selected the best frequencies for a specified heterogeneous clusters offline using some 
+heuristic methods. While our proposed algorithm works online during the execution time of 
+iterative application. Greedy dynamic approach used by Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements},  
+minimized the power consumption of a heterogeneous severs  with time/space complexity, this approach 
+had considerable overhead. In our proposed scaling algorithm has very small overhead and 
+it is works without any previous analysis for the application time complexity. The primary 
+contributions of our paper are :
+\begin{enumerate}
+\item It is presents  a new online heterogeneous scaling algorithm which has very small 
+      overhead and not need for any training and profiling.
+\item It is develops a new energy model for iterative distributed applications running over 
+       a heterogeneous clusters, taking into account the communication and slack times.
+\item The proposed scaling algorithm predicts both the energy and the execution time 
+      of the iterative application.
+\item It demonstrates a new optimization function which maximize the performance and 
+      minimize the energy consumption simultaneously.
+      
+\end{enumerate}
 
 \section{The performance and energy consumption measurements on heterogeneous architecture}
 \label{sec.exe}
 
 \section{The performance and energy consumption measurements on heterogeneous architecture}
 \label{sec.exe}
 %   can be deleted if we need space, we can just say we are interested in this
 %   paper in homogeneous clusters}
 
 %   can be deleted if we need space, we can just say we are interested in this
 %   paper in homogeneous clusters}
 
-\subsection{The execution time of message passing distributed iterative applications on a heterogeneous platform}
-In this paper, we are interested in reducing the energy consumption of message passing distributed iterative synchronous applications running over  heterogeneous platforms. We define a heterogeneous platform as  a collection of  heterogeneous  computing nodes interconnected via a high speed  homogeneous network. Therefore, each node has different characteristics such as computing power (FLOPS), energy consumption, cpu's frequency range, ... but they all have the same network bandwidth and latency.
-
-
-\begin{figure}[t]
+\subsection{The execution time of message passing distributed 
+                iterative applications on a heterogeneous platform}
+
+In this paper, we are interested in reducing the energy consumption of message
+passing distributed iterative synchronous applications running over
+heterogeneous platforms. We define a heterogeneous platform as a collection of
+heterogeneous computing nodes interconnected via a high speed homogeneous
+network. Therefore, each node has different characteristics such as computing
+power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
+have the same network bandwidth and latency.
+
+The overall execution time  of a distributed iterative synchronous application 
+over a heterogeneous platform  consists of the sum of the computation time and 
+the communication time for every iteration on a node. However, due to the 
+heterogeneous computation power of the computing nodes, slack times might occur 
+when fast nodes have to  wait, during synchronous communications, for  the slower 
+nodes to finish  their computations (see Figure~(\ref{fig:heter})). 
+Therefore,  the overall execution time  of the program is the execution time of the slowest
+task which have the highest computation time and no slack time.
+  
+ \begin{figure}[t]
   \centering
     \includegraphics[scale=0.6]{fig/commtasks}
   \caption{Parallel tasks on a heterogeneous platform}
   \label{fig:heter}
 \end{figure}
 
   \centering
     \includegraphics[scale=0.6]{fig/commtasks}
   \caption{Parallel tasks on a heterogeneous platform}
   \label{fig:heter}
 \end{figure}
 
- The  overall execution time  of a distributed iterative synchronous application over a heterogeneous platform  consists of the sum of the computation time and the communication time for every iteration on a node. However, due to the heterogeneous computation power of the computing nodes, slack times might occur when fast nodes have to
- wait, during synchronous communications, for  the slower nodes to finish  their computations (see Figure~(\ref{fig:heter})). 
- Therefore,  the overall execution time  of the program is the execution time of the slowest
- task which have the highest computation time and no slack time.
-Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in modern processors, that reduces the energy consumption
-of a CPU by scaling down its voltage and frequency.  Since DVFS lowers the frequency of a CPU and consequently its computing power, the execution time of a program running over that scaled down processor might increase, especially if the program is compute bound.  The frequency reduction process can be  expressed by the scaling factor S which is the ratio between  the maximum and the new frequency of a CPU as in EQ (\ref{eq:s}).
+Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in 
+modern processors, that reduces the energy consumption of a CPU by scaling 
+down its voltage and frequency.  Since DVFS lowers the frequency of a CPU 
+and consequently its computing power, the execution time of a program running 
+over that scaled down processor might increase, especially if the program is 
+compute bound.  The frequency reduction process can be  expressed by the scaling 
+factor S which is the ratio between  the maximum and the new frequency of a CPU 
+as in EQ (\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
 \end{equation}
 \begin{equation}
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
 \end{equation}
- The execution time of a compute bound sequential program is linearly proportional to the frequency scaling factor $S$. 
- On the other hand,  message passing distributed applications consist of two parts: computation and communication. The execution time of the computation part is linearly proportional to the frequency scaling factor $S$ but  the communication time is not affected by the scaling factor because  the processors involved remain idle during the  communications~\cite{17}. The communication time for a task is the summation of periods of time that begin with an MPI call for sending or receiving   a message till the message is synchronously sent or received.
-
-Since in a heterogeneous platform, each node has different characteristics, especially different frequency gears, when applying DVFS operations on these nodes, they may get different scaling factors represented by a scaling vector: $(S_1, S_2,..., S_N)$ where $S_i$ is the scaling factor of processor $i$. To be able to predict the execution time of message passing synchronous iterative applications running over a heterogeneous platform, for different vectors of scaling factors, the  communication time and the computation time  for all the 
- tasks must be measured during the first iteration before applying any DVFS operation. Then the execution time for one iteration of the application with any vector of scaling factors  can be  predicted using EQ (\ref{eq:perf}).
-  
-  
-\begin{multline}
+ The execution time of a compute bound sequential program is linearly proportional 
+ to the frequency scaling factor $S$.  On the other hand,  message passing 
+ distributed applications consist of two parts: computation and communication. 
+ The execution time of the computation part is linearly proportional to the 
+ frequency scaling factor $S$ but  the communication time is not affected by the 
+ scaling factor because  the processors involved remain idle during the  
+ communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}. 
+ The communication time for a task is the summation of  periods of 
+ time that begin with an MPI call for sending or receiving   a message 
+ till the message is synchronously sent or received.
+
+Since in a heterogeneous platform, each node has different characteristics,
+especially different frequency gears, when applying DVFS operations on these
+nodes, they may get different scaling factors represented by a scaling vector:
+$(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
+be able to predict the execution time of message passing synchronous iterative
+applications running over a heterogeneous platform, for different vectors of
+scaling factors, the communication time and the computation time for all the
+tasks must be measured during the first iteration before applying any DVFS
+operation. Then the execution time for one iteration of the application with any
+vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
+\begin{equation}
   \label{eq:perf}
  \textit  T_\textit{new} = 
   \label{eq:perf}
  \textit  T_\textit{new} = 
- {} \max_{i=1,2,\dots,N} (TcpOld_{i} \cdot S_{i}) +  TcmOld_{j}
-\end{multline}
-where $TcpOld_i$ is the computation time  of processor $i$ during the first iteration and $TcmOld_j$ is the communication time of the slowest processor $j$.
-  The model computes the maximum computation time 
- with scaling factor from each node  added to the communication time of the slowest node, it means  only the
- communication time without any slack time. 
-
-This prediction model is based on our model for predicting the execution time of message passing distributed applications for homogeneous architectures~\cite{45}. The execution time prediction model is used in our method for optimizing both energy consumption and performance of iterative methods, which is presented in the following sections.
+ \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) +  MinTcm
+\end{equation}
+where $TcpOld_i$ is the computation time  of processor $i$ during the first 
+iteration and $MinTcm$ is the communication time of the slowest processor from 
+the first iteration.  The model computes the maximum computation time 
+with scaling factor from each node  added to the communication time of the 
+slowest node, it means  only the  communication time without any slack time. 
+Therefore, we can consider the execution time of the iterative application is 
+equal to the execution time of one iteration as in EQ(\ref{eq:perf}) multiplied 
+by the number of iterations of that application.
+
+This prediction model is developed from our model for predicting the execution time of 
+message passing distributed applications for homogeneous architectures~\cite{Our_first_paper}. 
+The execution time prediction model is used in our method for optimizing both 
+energy consumption and performance of iterative methods, which is presented in the 
+following sections.
 
 
 \subsection{Energy model for heterogeneous platform}
 
 
 \subsection{Energy model for heterogeneous platform}
-
-Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
+Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
+Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
+Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by a processor into
 two power metrics: the static and the dynamic power.  While the first one is
 consumed as long as the computing unit is turned on, the latter is only consumed during
 two power metrics: the static and the dynamic power.  While the first one is
 consumed as long as the computing unit is turned on, the latter is only consumed during
-computation times.  The dynamic power $P_{d}$ is related to the switching
+computation times.  The dynamic power $Pd$ is related to the switching
 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
 operational frequency $F$, as shown in EQ(\ref{eq:pd}).
 \begin{equation}
   \label{eq:pd}
 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
 operational frequency $F$, as shown in EQ(\ref{eq:pd}).
 \begin{equation}
   \label{eq:pd}
-  P_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F
+  Pd = \alpha \cdot C_L \cdot V^2 \cdot F
 \end{equation}
 \end{equation}
-The static power $P_{s}$ captures the leakage power as follows:
+The static power $Ps$ captures the leakage power as follows:
 \begin{equation}
   \label{eq:ps}
 \begin{equation}
   \label{eq:ps}
-   P_\textit{s}  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
+   Ps  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
 \end{equation}
 where V is the supply voltage, $N_{trans}$ is the number of transistors,
 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
 \end{equation}
 where V is the supply voltage, $N_{trans}$ is the number of transistors,
 $K_{design}$ is a design dependent parameter and $I_{leak}$ is a
@@ -163,102 +322,152 @@ technology-dependent parameter.  The energy consumed by an individual processor
 to execute a given program can be computed as:
 \begin{equation}
   \label{eq:eind}
 to execute a given program can be computed as:
 \begin{equation}
   \label{eq:eind}
-   E_\textit{ind} =  P_\textit{d} \cdot T_{cp} + P_\textit{s} \cdot T
+   E_\textit{ind} =  Pd \cdot Tcp + Ps \cdot T
 \end{equation}
 \end{equation}
-where $T$ is the execution time of the program, $T_{cp}$ is the computation
-time and $T_{cp} \leq T$.  $T_{cp}$ may be equal to $T$ if there is no
+where $T$ is the execution time of the program, $Tcp$ is the computation
+time and $Tcp \leq T$.  $Tcp$ may be equal to $T$ if there is no
 communication and no slack time.
 
 communication and no slack time.
 
-The main objective of DVFS operation is to
-reduce the overall energy consumption~\cite{37}.  The operational frequency $F$
-depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
+The main objective of DVFS operation is to reduce the overall energy consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  
+The operational frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
 constant $\beta$.  This equation is used to study the change of the dynamic
 constant $\beta$.  This equation is used to study the change of the dynamic
-voltage with respect to various frequency values in~\cite{3}.  The reduction
+voltage with respect to various frequency values in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction
 process of the frequency can be expressed by the scaling factor $S$ which is the
 process of the frequency can be expressed by the scaling factor $S$ which is the
-ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
+ratio between the maximum and the new frequency as in EQ(\ref{eq:s}).
 The CPU governors are power schemes supplied by the operating
 system's kernel to lower a core's frequency. we can calculate the new frequency 
 $F_{new}$ from EQ(\ref{eq:s}) as follow:
 \begin{equation}
   \label{eq:fnew}
 The CPU governors are power schemes supplied by the operating
 system's kernel to lower a core's frequency. we can calculate the new frequency 
 $F_{new}$ from EQ(\ref{eq:s}) as follow:
 \begin{equation}
   \label{eq:fnew}
-   F_\textit{new} = S^{-1}  F_\textit{max}
+   F_\textit{new} = S^{-1} \cdot F_\textit{max}
 \end{equation}
 \end{equation}
-Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following equation for dynamic 
-power consumption:
+Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following 
+equation for dynamic power consumption:
 \begin{multline}
   \label{eq:pdnew}
    {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
 \begin{multline}
   \label{eq:pdnew}
    {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
-   = \alpha \cdot C_L \cdot V^2 \cdot F \cdot S^{-3} = P_{dOld} \cdot S^{-3}
+   {} = \alpha \cdot C_L \cdot V^2 \cdot F_{max} \cdot S^{-3} = P_{dOld} \cdot S^{-3}
 \end{multline}
 \end{multline}
-where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the new frequency and the maximum frequency respectively.
+where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the 
+new frequency and the maximum frequency respectively.
 
 According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
 
 According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
-reducing the frequency by a factor of $S$~\cite{3}. Since the FLOPS of a CPU is proportional to the frequency of a CPU, the computation time is increased proportionally to $S$.  The new dynamic energy is the  dynamic power multiplied by the new time of computation and is given by the following equation:
+reducing the frequency by a factor of $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is proportional 
+to the frequency of a CPU, the computation time is increased proportionally to $S$.  
+The new dynamic energy is the  dynamic power multiplied by the new time of computation 
+and is given by the following equation:
 \begin{equation}
   \label{eq:Edyn}
 \begin{equation}
   \label{eq:Edyn}
-   E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (T_{cp} \cdot S)= S^{-2}\cdot P_{dOld} \cdot  T_{cp} 
+   E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (Tcp \cdot S)= S^{-2}\cdot P_{dOld} \cdot  Tcp 
 \end{equation}
 \end{equation}
-The static power is related to the power leakage of the CPU and is consumed during computation and even when idle. As in~\cite{3,46}, we assume that the static power of a processor is constant during idle and computation periods, and for all its available frequencies. 
-The static energy is the static power multiplied by the execution time of the program. According to the execution time model in EQ(\ref{eq:perf}), 
-the execution time of the program is the summation of the computation and the communication times. The computation time is linearly related  
-to the frequency scaling factor, while this scaling factor does not affect the communication time. The static energy 
-of a processor after scaling its frequency is computed as follows: 
-
+The static power is related to the power leakage of the CPU and is consumed during computation 
+and even when idle. As in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling}, 
+we assume that the static power of a processor is constant 
+during idle and computation periods, and for all its available frequencies. 
+The static energy is the static power multiplied by the execution time of the program. 
+According to the execution time model in EQ(\ref{eq:perf}), the execution time of the program 
+is the summation of the computation and the communication times. The computation time is linearly related  
+to the frequency scaling factor, while this scaling factor does not affect the communication time. 
+The static energy of a processor after scaling its frequency is computed as follows: 
 \begin{equation}
   \label{eq:Estatic}
 \begin{equation}
   \label{eq:Estatic}
- E_\textit{s} = P_\textit{s} \cdot (T_{cp} \cdot S  + T_{cm})
+ E_\textit{s} = Ps \cdot (Tcp \cdot S  + Tcm)
 \end{equation}
 
 \end{equation}
 
-In the considered heterogeneous platform, each processor $i$ might have different dynamic and static powers, noted as $P_{di}$ and $P_{si}$ respectively. Therefore, even if the distributed message passing iterative application is load balanced, the computation time of each CPU $i$ noted $T_{cpi}$ might be different and different frequency  scaling factors might be computed in order to decrease the overall energy consumption of the application and reduce the slack times. The communication time of a processor $i$ is noted as $T_{cmi}$ and could contain slack times if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do not have equal communication times. While the dynamic energy is computed according to the  frequency scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}),  the static energy is computed as the sum of the execution time of each processor multiplied by its static power. The overall energy consumption of a message passing  distributed application  executed over a heterogeneous platform is the summation of all dynamic and static energies for each  processor.  It is computed as follows:
+In the considered heterogeneous platform, each processor $i$ might have different dynamic and 
+static powers, noted as $Pd_{i}$ and $Ps_{i}$ respectively. Therefore, even if the distributed 
+message passing iterative application is load balanced, the computation time of each CPU $i$ 
+noted $Tcp_{i}$ might be different and different frequency  scaling factors might be computed 
+in order to decrease the overall energy consumption of the application and reduce the slack times. 
+The communication time of a processor $i$ is noted as $Tcm_{i}$ and could contain slack times 
+if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do 
+not have equal communication times. While the dynamic energy is computed according to the frequency 
+scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}), the static energy is 
+computed as the sum of the execution time of each processor multiplied by its static power. 
+The overall energy consumption of a message passing  distributed application executed over a 
+heterogeneous platform during one iteration is the summation of all dynamic and static energies 
+for each  processor.  It is computed as follows:
 \begin{multline}
   \label{eq:energy}
 \begin{multline}
   \label{eq:energy}
- E = \sum_{i=1}^{N} {(S_i^{-2} \cdot P_{di} \cdot  T_{cpi})} +\\ 
- {}\sum_{i=1}^{N} {(P_{si} \cdot (\max_{i=1,2,\dots,N} (T_{cpi} \cdot S_{i}) +} 
- {}\min_{i=1,2,\dots,N} {T_{cmi}))} 
+ E = \sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_{i} \cdot  Tcp_i)} + {} \\
+ \sum_{i=1}^{N} (Ps_{i} \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) +
+  {MinTcm))}
  \end{multline}
  \end{multline}
-Reducing the the frequencies of the processors according to the vector of scaling factors $(S_1, S_2,..., S_N)$  may degrade the  performance of the application and thus,
-increase the static energy because the execution time is increased~\cite{36}.
+
+Reducing the frequencies of the processors according to the vector of
+scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
+application and thus, increase the static energy because the execution time is
+increased~\cite{Kim_Leakage.Current.Moore.Law}. We can measure the overall energy consumption for the iterative 
+application by measuring  the energy consumption for one iteration as in EQ(\ref{eq:energy}) 
+multiplied by the number of iterations of that application.
+
 
 \section{Optimization of both energy consumption and performance}
 \label{sec.compet}
 
 \section{Optimization of both energy consumption and performance}
 \label{sec.compet}
-Applying DVFS to lower level  not surly reducing the energy consumption to minimum level. Also, a big scaling for the frequency produces high performance degradation percent. Moreover, by considering the  drastically  increase in execution time of parallel program, the static energy is related to this time 
-and it also increased by the same ratio. Thus, the opportunity for gaining more energy reduction is restricted. For that choosing frequency scaling factors is very important process to taking into account both energy and performance. In our previous work~\cite{45}, we are proposed a method that selects the optimal frequency scaling factor for an homogeneous cluster, depending on the trade-off relation between the energy and performance. In this work we have an  heterogeneous cluster, at each node there is different scaling factors, so our goal is to selects the optimal set of frequency scaling factors, $Sopt_1,Sopt_2,...,Sopt_N$, that gives the best trade-off  between energy consumption and performance. The relation between the energy and the execution time is complex and nonlinear, Thus, unlike the relation between the performance and  the scaling factor,  the relation of the energy with the frequency scaling factors is nonlinear, for more details refer to~\cite{17}.  Moreover, they are not measured using the same metric.  To solve this problem, we normalize the execution time by calculating the ratio between the new execution time (the scaled execution time) and the old one as follow:
+
+Using the lowest frequency for each processor does not necessarily gives the most energy 
+efficient execution of an application. Indeed, even though the dynamic power is reduced 
+while scaling down the frequency of a processor, its computation power is proportionally 
+decreased and thus the execution time might be drastically increased during which dynamic 
+and static powers are being consumed. Therefore,  it might cancel any gains achieved by 
+scaling down the frequency of all nodes to the minimum  and the overall energy consumption 
+of the application might not be the optimal one. It is not trivial to select the appropriate 
+frequency scaling factor for each processor while considering the characteristics of each processor 
+(computation power, range of frequencies, dynamic and static powers) and the task executed 
+(computation/communication ratio) in order to reduce the overall energy consumption and not 
+significantly increase the execution time. In our previous work~\cite{Our_first_paper}, we  proposed a method 
+that selects the optimal frequency scaling factor for a homogeneous cluster executing a message 
+passing iterative synchronous application while giving the best trade-off  between the energy 
+consumption and the performance for such applications. In this work we are interested in 
+heterogeneous clusters as described above. Due to the heterogeneity of the processors, not 
+one but a  vector of scaling factors should be selected and it must  give the best trade-off 
+between energy consumption and performance. 
+
+The relation between the energy consumption and the execution time for an application is 
+complex and nonlinear, Thus, unlike the relation between the execution time 
+and the scaling factor, the relation of the energy with the frequency scaling
+factors is nonlinear, for more details refer to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.  
+Moreover, they are not measured using the same metric.  To solve this problem, we normalize the
+execution time by computing the ratio between the new execution time (after 
+scaling down the frequencies of some processors) and the initial one (with maximum 
+frequency for all nodes,) as follows:
 \begin{multline}
   \label{eq:pnorm}
   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
 \begin{multline}
   \label{eq:pnorm}
   P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
-          = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}} 
+       {} = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +MinTcm}
            {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
 \end{multline}
 
 
            {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
 \end{multline}
 
 
-By the same way, we are normalize the energy by calculating the ratio between the consumed energy with scaled frequency and the consumed energy without scaled frequency:
+In the same way, we normalize the energy by computing the ratio between the consumed energy 
+while scaling down the frequency and the consumed energy with maximum frequency for all nodes:
 \begin{multline}
   \label{eq:enorm}
   E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
 \begin{multline}
   \label{eq:enorm}
   E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
-   = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
+  {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
 \end{multline} 
  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
 \end{multline} 
-Where $T_{New}$ and $T_{Old}$ is computed as in EQ(\ref{eq:pnorm}). The second problem 
-is that the optimization operation for both energy and performance is not in the same direction.  
-In other words, the normalized energy and the normalized execution time curves are not at the same direction.  
-While the main goal is to optimize the energy and execution time in the same time.  According to the 
-equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the set of frequency scaling factors $S_1,S_2,...,S_N$ reduce both the energy and the
-execution time simultaneously.  But the main objective is to produce maximum energy
-reduction with minimum execution time reduction.  Many researchers used different
-strategies to solve this nonlinear problem for example see~\cite{19,42}, their
-methods add big overheads to the algorithm to select the suitable frequency.
-In this paper we are present a method to find the optimal set of frequency scaling factors to optimize both energy and execution time simultaneously
-without adding a big overhead.  Our solution for this problem is to make the optimization process
-for energy and execution time follow the same direction.  Therefore, we inverse the equation of the normalized
-execution time, the normalized performance,  as follows:
+Where $T_{New}$ and $T_{Old}$ are computed as in EQ(\ref{eq:pnorm}).
+
+ While the main 
+goal is to optimize the energy and execution time at the same time, the normalized 
+energy and execution time curves are not in the same direction. According 
+to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the vector  of frequency
+scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
+time simultaneously.  But the main objective is to produce maximum energy
+reduction with minimum execution time reduction.  
 
 
+  
+Our solution for this problem is to make the optimization process for energy and 
+execution time follow the same direction.  Therefore, we inverse the equation of the 
+normalized execution time which gives the normalized performance equation, as follows:
 \begin{multline}
   \label{eq:pnorm_inv}
   P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
           = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
 \begin{multline}
   \label{eq:pnorm_inv}
   P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
           = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
-            { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +\min_{i=1,2,\dots,N} {Tcm_{i}}
+            { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm
 \end{multline}
 
 
 \end{multline}
 
 
@@ -276,46 +485,98 @@ execution time, the normalized performance,  as follows:
 Then, we can model our objective function as finding the maximum distance
 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
 curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
 Then, we can model our objective function as finding the maximum distance
 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
 curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
-represents the minimum energy consumption with minimum execution time (better
-performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}) .  Then our objective
+represents the minimum energy consumption with minimum execution time (maximum 
+performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}). Then our objective
 function has the following form:
 function has the following form:
-\begin{multline}
+\begin{equation}
   \label{eq:max}
   Max Dist = 
   \max_{i=1,\dots F, j=1,\dots,N}
       (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
        \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
   \label{eq:max}
   Max Dist = 
   \max_{i=1,\dots F, j=1,\dots,N}
       (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
        \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
-\end{multline}
+\end{equation}
 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each nodes. 
 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each nodes. 
-Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}).  Our objective function can
-work with any energy model or energy values stored in a data file.
-Moreover, this function works in optimal way when the energy curve has a convex
-form over the available frequency scaling factors as shown in~\cite{15,3,19}.
+Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}).  
+Our objective function can work with any energy model or any power values for each node 
+(static and dynamic powers). However, the most energy reduction gain can be achieved when 
+the energy curve has a convex form as shown in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
 
 
-\section{The heterogeneous scaling algorithm }
+\section{The scaling factors selection algorithm for heterogeneous platforms }
 \label{sec.optim}
 \label{sec.optim}
-In this section we proposed an heterogeneous scaling algorithm, (figure~\ref{HSA}), that selects the optimal set of scaling factors from each node. 
-The algorithm is numerates the suitable range of available scaling factors for each node in the heterogeneous cluster, returns a set of optimal frequency scaling factors for each node. Using heterogeneous cluster is produces different workloads for each node. Therefore, the fastest nodes waiting at the barrier for the slowest nodes to finish there work as in figure (\ref{fig:heter}). Our algorithm takes into account these imbalanced workloads when is starts to search for selecting the best scaling factors. So, the algorithm is selecting the initial frequencies values for each node proportional to the times of computations that gathered from the first iteration. As an example in figure (\ref{fig:st_freq}), the algorithm don't test the first frequencies of the fastest nodes until it converge their frequencies to the frequency of the slowest node. If the algorithm is starts test changing the frequency of the slowest nodes from beginning, we are loosing performance and then not selecting the best tradeoff (the distance). This case will be similar to the homogeneous cluster when all nodes scales their frequencies together from the  beginning. In this case there is a small distance between energy and performance curves, for example see the figure(\ref{fig:r1}).  Then the algorithm searching for optimal frequency  scaling factor from the selected frequencies until the last available ones. 
-\begin{figure}[t]
-  \centering
-    \includegraphics[scale=0.5]{fig/start_freq}
-  \caption{Selecting the initial frequencies}
-  \label{fig:st_freq}
-\end{figure}
 
 
-
-To compute the initial frequencies, the algorithm firstly needs to compute the computation scaling factors $Scp_i$ for each node. Each one of these factors represent a ratio between the computation time of the slowest node and the computation time of the node $i$ as follow:
+In this section we  propose algorithm~(\ref{HSA}) which selects the frequency scaling factors 
+vector that gives the best trade-off between minimizing the energy consumption  and maximizing 
+the performance of a message passing synchronous iterative application executed on a heterogeneous 
+platform. It works online during the execution time of the iterative message passing program.  
+It uses information gathered during the first iteration such as the computation time and the 
+communication time in one iteration for each node. The algorithm is executed  after the first 
+iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective 
+function EQ(\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs 
+according to the computed scaling factors.  This algorithm is called just once during the execution 
+of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called 
+in the iterative MPI program.
+
+The nodes in a heterogeneous platform have different computing powers, thus while executing message 
+passing iterative synchronous applications, fast nodes have to wait for the slower ones to finish their 
+computations before being able to synchronously communicate with them as in figure (\ref{fig:heter}). 
+These periods are called idle or slack times. 
+Our algorithm takes into account this problem and tries to reduce these slack times when selecting the 
+frequency scaling factors vector. At first, it selects initial frequency scaling factors that increase 
+the execution times of fast nodes and  minimize the  differences between  the  computation times of 
+fast and slow nodes. The value of the initial frequency scaling factor  for each node is inversely 
+proportional to its computation time that was gathered from the first iteration. These initial frequency 
+scaling factors are computed as   a ratio between the computation time of the slowest node and the 
+computation time of the node $i$ as follows:
 \begin{equation}
   \label{eq:Scp}
  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
 \end{equation}
 \begin{equation}
   \label{eq:Scp}
  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
 \end{equation}
-Depending on the initial computation scaling factors EQ(\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the 
-maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as follow:
+Using the initial  frequency scaling factors computed in EQ(\ref{eq:Scp}), the algorithm computes 
+the initial frequencies for all nodes as a ratio between the maximum frequency of node $i$  
+and the computation scaling factor $Scp_i$ as follows:
 \begin{equation}
   \label{eq:Fint}
  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
 \end{equation}
 \begin{equation}
   \label{eq:Fint}
  F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
 \end{equation}
-\begin{figure}[tp]
+If the computed initial frequency for a node is not available in the gears of that node, the computed 
+initial frequency is replaced by the nearest available frequency. In  figure (\ref{fig:st_freq}), 
+the nodes are  sorted by their computing powers in ascending order and the frequencies of the faster 
+nodes are scaled down according to the computed initial frequency scaling factors. The resulting new 
+frequencies are colored in blue in  figure (\ref{fig:st_freq}). This set of frequencies can be considered 
+as a higher bound for the search space of the optimal vector of frequencies because selecting frequency 
+scaling factors higher than the higher bound will not improve the performance of the application and 
+it will increase its overall energy consumption. Therefore the algorithm that selects the frequency 
+scaling factors starts the search method from these initial frequencies and takes a downward search direction 
+toward lower frequencies. The algorithm iterates on all left frequencies, from the higher bound until all 
+nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select 
+the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node 
+according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of  
+all other nodes by one gear.
+The new overall energy consumption and execution time are computed according to the new scaling factors. 
+The optimal set of frequency scaling factors is the set that gives the highest distance according to  the objective 
+function EQ(\ref{eq:max}).
+
+The plots~(\ref{fig:r1} and \ref{fig:r2}) illustrate the normalized performance and consumed energy for an 
+application running on a homogeneous platform and a heterogeneous platform respectively while increasing the 
+scaling factors. It can be noticed that in a homogeneous platform the search for the optimal scaling factor 
+should be started from the maximum frequency because the performance and the consumed energy is decreased since  
+the beginning of the plot. On the other hand, in  the heterogeneous platform the performance is  maintained at 
+the beginning of the plot even if the frequencies of the faster nodes are decreased until the scaled down nodes 
+have computing powers lower than the slowest node. In other words, until they reach the higher bound. It can 
+also be noticed that the higher the difference between the faster nodes and the slower nodes is, the bigger 
+the maximum distance between the energy curve and the performance curve is while varying the scaling factors 
+which results in bigger energy savings. 
+\begin{figure}[t]
+  \centering
+    \includegraphics[scale=0.5]{fig/start_freq}
+  \caption{Selecting the initial frequencies}
+  \label{fig:st_freq}
+\end{figure}
+
+
+
+
+\begin{algorithm}
   \begin{algorithmic}[1]
     % \footnotesize
     \Require ~
   \begin{algorithmic}[1]
     % \footnotesize
     \Require ~
@@ -327,49 +588,40 @@ maximum frequency of node $i$  and the computation scaling factor $Scp_i$ as fol
     \item[$Ps_i$] array of the static powers for all nodes.
     \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
     \end{description}
     \item[$Ps_i$] array of the static powers for all nodes.
     \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
     \end{description}
-    \Ensure $Sopt_1, \dots ,Sopt_N$ is a set of optimal scaling factors 
+    \Ensure $Sopt_1,Sopt_2 \dots, Sopt_N$ is a vector of optimal scaling factors
 
     \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
     \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
     \If{(not the first frequency)}
 
     \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
     \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
     \If{(not the first frequency)}
-          \State $F_i \gets F_i+Fdiff_i,~i=1,...,N.$
+          \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
     \EndIf 
     \EndIf 
-    \State $T_\textit{Old} \gets max_{~i=1,...,N } (Tcp_i+Tcm_i)$
+    \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
     \State $Dist \gets 0$
     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
     \State $Dist \gets 0$
-    \State  $Sopt_{i} \gets 1,~i=1,...,N. $
+    \State  $Sopt_{i} \gets 1,~i=1,\dots,N. $
     \While {(all nodes not reach their  minimum  frequency)}
         \If{(not the last freq. \textbf{and} not the slowest node)}
     \While {(all nodes not reach their  minimum  frequency)}
         \If{(not the last freq. \textbf{and} not the slowest node)}
-        \State $F_i \gets F_i - Fdiff_i,~i=1,...,N.$ 
-        \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,...,N.$ 
+        \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
+        \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,\dots,N.$
         \EndIf
         \EndIf
-       \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + min_\textit{~i=1,\dots,N}(Tcm_i) $
+       \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm $
        \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
                $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
        \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
        \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
       \If{$(\Pnorm - \Enorm > \Dist)$}
        \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
                $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
        \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
        \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
       \If{$(\Pnorm - \Enorm > \Dist)$}
-        \State $Sopt_{i} \gets S_{i},~i=1,...,N. $
+        \State $Sopt_{i} \gets S_{i},~i=1,\dots,N. $
         \State $\Dist \gets \Pnorm - \Enorm$
       \EndIf
     \EndWhile
         \State $\Dist \gets \Pnorm - \Enorm$
       \EndIf
     \EndWhile
-    \State  Return $Sopt_1,Sopt_2, \dots ,Sopt_N$
+    \State  Return $Sopt_1,Sopt_2,\dots,Sopt_N$
   \end{algorithmic}
   \caption{Heterogeneous scaling algorithm}
   \label{HSA}
   \end{algorithmic}
   \caption{Heterogeneous scaling algorithm}
   \label{HSA}
-\end{figure}
-When the initial frequencies are computed the algorithm numerates all available scaling factors starting from these frequencies  until all nodes reach their 
-minimum frequencies. At each iteration the algorithm remains the frequency of the slowest node without change and scaling the frequency of the other nodes. This is gives better performance and energy tradeoff. 
-The proposed algorithm works online during the execution time of the MPI
-program.  Its returns a set of optimal frequency scaling factors $Sopt_i$ depending on the objective function EQ(\ref{eq:max}). The program changes the new frequencies of the CPUs according to the computed scaling factors.  This algorithm has a small execution time: 
-for an heterogeneous  cluster composed of four different types of nodes having the characteristics presented in
-table~(\ref{table:platform}), it takes \np[ms]{0.04} on average for 4 nodes and
-\np[ms]{0.1} on average for 128 nodes.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, 
-where $F$ is the number of iterations and $N$ is the number of
-computing nodes. The algorithm needs on average from 12 to 20 iterations for all the NAS benchmark on class C to selects the best set of frequency scaling factors. Its called just once during the execution of the program.  The DVFS figure~(\ref{dvfs}) shows where and when the algorithm is
-called in the MPI program.
-\begin{figure}[tp]
+\end{algorithm}
+
+\begin{algorithm}
   \begin{algorithmic}[1]
     % \footnotesize
     \For {$k=1$ to \textit{some iterations}}
   \begin{algorithmic}[1]
     % \footnotesize
     \For {$k=1$ to \textit{some iterations}}
@@ -387,33 +639,49 @@ called in the MPI program.
   \end{algorithmic}
   \caption{DVFS algorithm}
   \label{dvfs}
   \end{algorithmic}
   \caption{DVFS algorithm}
   \label{dvfs}
-\end{figure}
+\end{algorithm}
 
 \section{Experimental results}
 \label{sec.expe}
 
 \section{Experimental results}
 \label{sec.expe}
-The experiments  of this work are executed on the simulator Simgrid/SMPI v3.10. We configure the simulator to use a heterogeneous cluster 
-with one core per node. The proposed heterogeneous cluster has four different types of nodes. Each node in cluster has different characteristics 
-such as the maximum frequency speed, the number of available frequencies and dynamic and static powers values, see table (\ref{table:platform}). These different types of processing nodes simulate some real Intel processors. The maximum number of nodes that supported by the cluster is 144 nodes according to  characteristics of some MPI programs of the NAS benchmarks that used. We are use the same number from each type of nodes when running the MPI programs, for example if we execute the program on 8 node, there are 2 nodes from each type participating in the computing. The dynamic and static power values is different from one type to other. Each node has a dynamic and static power values proportional to their performance/GFlops, for more details see the Intel data sheets in \cite{47}.  Each node has a percentage of  80\% for dynamic power and 20\% for static power from the hole power consumption, the same assumption is made in \cite{45,3}. These nodes are connected via an ethernet network with 1 Gbit/s bandwidth.
+To evaluate the efficiency and the overall energy consumption reduction of algorithm~(\ref{HSA}), 
+it was applied to the NAS parallel benchmarks NPB v3.3  \cite{NAS.Parallel.Benchmarks}. The experiments were executed 
+on the simulator SimGrid/SMPI v3.10~\cite{casanova+giersch+legrand+al.2014.versatile} which offers 
+easy tools to create a heterogeneous platform and run message passing applications over it. The 
+heterogeneous platform that was used in the experiments, had one core per node because just one 
+process was executed per node. The heterogeneous platform  was composed of four types of nodes. 
+Each type of nodes had different characteristics such as the maximum CPU frequency, the number of
+available frequencies and the computational power, see table (\ref{table:platform}). The characteristics 
+of these different types of  nodes are inspired   from the specifications of real Intel processors. 
+The heterogeneous platform had up to 144 nodes and had nodes from the four types in equal proportions, 
+for example if  a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the constructors 
+of CPUs do not specify the dynamic and the static power of their CPUs, for each type of node they were 
+chosen proportionally to its computing power (FLOPS).  In the initial heterogeneous platform,  while computing 
+with highest frequency, each node  consumed power proportional to its computing power which 80\% of it was 
+dynamic power and the rest was 20\% for the static power, the same assumption  was made in \cite{Our_first_paper,Rauber_Analytical.Modeling.for.Energy}. 
+Finally, These nodes were connected via an ethernet network with 1 Gbit/s bandwidth.
+
+
 \begin{table}[htb]
   \caption{Heterogeneous nodes characteristics}
   % title of Table
   \centering
   \begin{tabular}{|*{7}{l|}}
     \hline
 \begin{table}[htb]
   \caption{Heterogeneous nodes characteristics}
   % title of Table
   \centering
   \begin{tabular}{|*{7}{l|}}
     \hline
-    Node     & Similar     & Max        & Min          & Diff.          & Dynamic      & Static \\
-    type     & to          & Freq. GHz  & Freq. GHz    & Freq GHz       & power        & power \\
+    Node          &Simulated  & Max      & Min          & Diff.          & Dynamic      & Static \\
+    type          &GFLOPS     & Freq.    & Freq.        & Freq.          & power        & power \\
+                  &           & GHz      & GHz          &GHz             &              &       \\
     \hline
     \hline
-    1       & core-i3       & 2.5         & 1.2          & 0.1           & 20~w         &4~w    \\
-            &  2100T        &             &              &               &              &  \\
+    1             &40         & 2.5      & 1.2          & 0.1            & 20~w         &4~w    \\
+                  &           &          &              &                &              &  \\
     \hline
     \hline
-    2       & Xeon          & 2.66        & 1.6          & 0.133         & 25~w         &5~w    \\
-            & 7542          &             &              &               &              &  \\
+    2             &50         & 2.66     & 1.6          & 0.133          & 25~w         &5~w    \\
+                  &           &          &              &                &              &  \\
     \hline
     \hline
-    3       & core-i5       & 2.9         & 1.2          & 0.1           & 30~w         &6~w    \\
-            & 3470s         &             &              &               &              &  \\
+    3             &60         & 2.9      & 1.2          & 0.1            & 30~w         &6~w    \\
+                  &           &          &              &                &              &  \\
     \hline
     \hline
-    4       & core-i7       & 3.4         & 1.6          & 0.133         & 35~w         &7~w    \\
-            & 2600s         &             &              &               &              &  \\
+    4             &70         & 3.4      & 1.6          & 0.133          & 35~w         &7~w    \\
+                  &           &          &              &                &              &  \\
     \hline
   \end{tabular}
   \label{table:platform}
     \hline
   \end{tabular}
   \label{table:platform}
@@ -426,11 +694,15 @@ such as the maximum frequency speed, the number of available frequencies and dyn
 \subsection{The experimental results of the scaling algorithm}
 \label{sec.res}
 
 \subsection{The experimental results of the scaling algorithm}
 \label{sec.res}
 
-The proposed algorithm was applied to seven MPI programs of the NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) NPB v3.
-\cite{44},  which were run with three classes (A, B and C).
-In this experiments we are focus on running of the class C, the biggest class compared to A and B, on different number of 
-nodes, from 4 to 128 or 144 nodes according to the type of the MPI program.  Depending on the proposed energy consumption model EQ(\ref{eq:energy}),
- we are measure the energy consumption for all NAS MPI programs. The dynamic and static power values used under the same assumption used by \cite{45,3}. We used a percentage of 80\% for dynamic power from all power consumption of the CPU and 20\% for static power. The heterogeneous nodes in table (\ref{table:platform}) have different  simulated performance, ranked from the node of type 1 with smaller performance/GFlops to the highest performance/GFlops for node 4. Therefore, the power values used proportionally increased from node 1 to node 4 that with highest performance. Then we used an assumption that the power consumption increases linearly with the performance/GFlops of the processor see \cite{48}.   
+
+The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) 
+and the benchmarks were executed with the three classes: A,B and C. However, due to the lack of space in 
+this paper, only the results of the biggest class, C, are presented while being run on different number 
+of nodes, ranging  from 4 to 128 or 144 nodes depending on the benchmark being executed. Indeed, the 
+benchmarks CG, MG, LU, EP and FT should be executed on $1, 2, 4, 8, 16, 32, 64, 128$ nodes. 
+The other benchmarks such as BT and SP should be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
+
  
 \begin{table}[htb]
   \caption{Running NAS benchmarks on 4 nodes }
  
 \begin{table}[htb]
   \caption{Running NAS benchmarks on 4 nodes }
@@ -594,25 +866,100 @@ nodes, from 4 to 128 or 144 nodes according to the type of the MPI program.  Dep
   \end{tabular}
   \label{table:res_128n}
 \end{table}
   \end{tabular}
   \label{table:res_128n}
 \end{table}
+The overall energy consumption was computed for each instance according to the energy 
+consumption  model EQ(\ref{eq:energy}), with and without applying the algorithm. The 
+execution time was also measured for all these experiments. Then, the energy saving 
+and performance degradation percentages were computed for each instance.  
+The results are presented in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
+\ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). All these results are the 
+average values from many experiments for  energy savings and performance degradation.
+
+The tables  show the experimental results for running the NAS parallel benchmarks on different 
+number of nodes. The experiments show that the algorithm reduce significantly the energy 
+consumption (up to 35\%) and tries to limit the performance degradation. They also show that 
+the  energy saving percentage is decreased  when the number of the computing nodes is increased. 
+This reduction is due to the increase of the communication times compared to the execution times 
+when the benchmarks are run over a high number of nodes. Indeed, the benchmarks with the same class, C, 
+are executed on different number of nodes, so the computation required for each iteration is divided 
+by the number of computing nodes.   On the other hand, more communications are required when increasing 
+the number of nodes so the static energy is increased linearly according to the communication time and 
+the dynamic power is less relevant in the overall energy consumption. Therefore, reducing the frequency 
+with algorithm~(\ref{HSA}) have less effect in reducing the overall energy savings. It can also be 
+noticed that for the benchmarks EP and SP that contain little or no communications,  the energy savings 
+are not significantly affected with the high number of nodes. No experiments were conducted using bigger 
+classes such as D, because they require a lot of memory(more than 64GB) when being executed by the simulator 
+on one machine. The maximum distance between the normalized energy curve and the normalized performance 
+for each instance is also shown in the result tables. It is decreased in the same way as the energy 
+saving percentage. The tables also show that the performance degradation percentage is not significantly 
+increased when the number of computing nodes is increased because the computation times are small when 
+compared to the communication times.  
 
 
-The results of applying the proposed scaling algorithm to NAS benchmarks is demonstrated in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
-\ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). These tables show the results for running the NAS benchmarks on different number of nodes. In general the energy saving percent is decreased  when the number of the computing nodes is increased. While the distance is decreased by the same direction. This because when we are run the MPI programs on a big number of nodes the communications is biggest than the computations, so the static energy is increased linearly to these times. The tables also show that performance degradation percent still approximately the same or decreased a little when the number of computing nodes is increased. This  gives good a prove that the proposed algorithm keeping as mush as possible the performance degradation. 
 
 
 \begin{figure}
   \centering
 \begin{figure}
   \centering
-  \subfloat[Balanced nodes type scenario]{%
-    \includegraphics[width=.23185\textwidth]{fig/avg_eq}\label{fig:avg_eq}}%
+  \subfloat[Energy saving]{%
+    \includegraphics[width=.2315\textwidth]{fig/energy}\label{fig:energy}}%
   \quad%
   \quad%
-  \subfloat[Imbalanced nodes type scenario]{%
-    \includegraphics[width=.23185\textwidth]{fig/avg_neq}\label{fig:avg_neq}}
+  \subfloat[Performance degradation ]{%
+    \includegraphics[width=.2315\textwidth]{fig/per_deg}\label{fig:per_deg}}
   \label{fig:avg}
   \label{fig:avg}
-  \caption{The average of energy and performance for all Nas benchmarks running with difference number of nodes}
+  \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
 \end{figure}
 
 \end{figure}
 
-In the NAS benchmarks there are some programs executed on different number of nodes. The benchmarks CG, MG, LU and FT executed on 2 to a power of (1, 2, 4, 8, ...) of nodes. The other benchmarks such as BT and SP executed on 2 to a power of (1, 2, 4, 9, ...) of nodes. We are take the average of energy saving, performance degradation and distances for all results of NAS benchmarks. The average of these three objectives are plotted to the number of nodes as in plots (\ref{fig:avg_eq} and \ref{fig:avg_neq}).  In CG, MG, LU, and FT benchmarks the average of energy saving is decreased when the number of nodes is increased due to the increasing in the communication times as mentioned before. Thus, the average of distances (our objective function) is decreased linearly with energy saving while keeping the average of performance degradation the same. In BT and SP benchmarks, the average of energy saving is not decreased significantly compare to other benchmarks when the number of nodes is increased. Nevertheless, the average of performance  degradation approximately still the same ratio. This difference is depends on the characteristics of the benchmarks such as the computation to communication ratio that has. 
+Plots (\ref{fig:energy} and \ref{fig:per_deg}) present the energy saving and performance degradation 
+respectively for all the benchmarks according to the number of used nodes. As shown in the first plot, 
+the energy saving percentages of the benchmarks MG, LU, BT and FT are decreased linearly  when the the 
+number of nodes is increased. While for the  EP and SP benchmarks, the energy saving percentage is not 
+affected by the increase of the number of computing nodes, because in these benchmarks there are little or 
+no communications. Finally, the energy saving of the GC benchmark  is significantly decreased when the number 
+of nodes is increased because  this benchmark has more communications than the others. The second plot 
+shows that the performance degradation percentages of most of the benchmarks are decreased when they 
+run on a big number of nodes because they spend more time communicating than computing, thus, scaling 
+down the frequencies of some nodes have less effect on the performance. 
+
+
+
+
+\subsection{The results for different power consumption scenarios}
+
+The results of the previous section were obtained while using processors that consume during computation 
+an overall power which is 80\% composed of  dynamic power and 20\% of static power. In this section, 
+these ratios are changed and two new power scenarios are considered in order to evaluate how the proposed  
+algorithm adapts itself according to the static and dynamic power values.  The two new power scenarios 
+are the following: 
+
+\begin{itemize}
+\item 70\% dynamic power  and 30\% static power
+\item 90\% dynamic power  and 10\% static power
+\end{itemize}
+
+The NAS parallel benchmarks were executed again over processors that follow the the new power scenarios. 
+The class C of each benchmark was run over 8 or 9 nodes and the results are presented in  tables 
+(\ref{table:res_s1} and \ref{table:res_s2}). These tables show that the energy saving percentage of the 70\%-30\% 
+scenario is less for all benchmarks compared to the energy saving of the 90\%-10\% scenario. Indeed, in the latter 
+more dynamic power is consumed when nodes are running on their maximum frequencies, thus, scaling down the frequency 
+of the nodes results in higher energy savings than in the 70\%-30\% scenario. On the other hand,  the performance 
+degradation percentage is less in the 70\%-30\% scenario  compared to the 90\%-10\%  scenario. This is due to the 
+higher static power percentage in the first scenario which makes it more relevant in the overall consumed energy. 
+Indeed, the static energy is related to the execution time and if the performance is  degraded the total consumed 
+static energy is directly increased. Therefore, the proposed algorithm do not scales down much the frequencies of the 
+nodes  in order to limit the increase of the execution time and thus limiting the effect of the consumed static energy .
+
+The two new power scenarios are compared to the old one in figure (\ref{fig:sen_comp}). It shows the average of 
+the performance degradation, the energy saving and the distances for all NAS benchmarks of class C running on 8 or 9 nodes. 
+The comparison shows that  the energy saving ratio is proportional to the dynamic power ratio: it is increased 
+when applying the  90\%-10\% scenario because at maximum frequency the dynamic  energy is the the most relevant 
+in the overall consumed energy and can be reduced by lowering the frequency of some processors. On the other hand, 
+the energy saving is decreased when  the 70\%-30\% scenario is used because the dynamic  energy is less relevant in 
+the overall consumed energy and lowering the frequency do not returns big energy savings.
+Moreover, the average of the performance degradation is decreased when using a higher ratio for static power 
+(e.g. 70\%-30\% scenario and 80\%-20\% scenario). Since the proposed algorithm optimizes the energy consumption 
+when using a higher ratio for dynamic power the algorithm selects bigger frequency scaling factors that result in 
+more energy saving but less performance, for example see the figure (\ref{fig:scales_comp}). The opposite happens 
+when using a higher ratio for  static  power, the algorithm proportionally  selects  smaller scaling values which 
+results in less energy saving but less performance degradation. 
 
 
-\subsection{The results for different powers scenarios}
-The results of the previous section are obtained using a percentage of 80\% for dynamic power and 20\% for static power of total power consumption. In this section we are change these ratio by using two others scenarios. Because is  interested to measure the ability  of the proposed algorithm to changes it   behaviour when these power ratios are changed. In fact, we are use two different scenarios for dynamic and static power ratios in addition to the previous scenario in section (\ref{sec.res}). Therefore, we have three different scenarios for three different dynamic and static power ratios refer to as: 70\%-20\%, 80\%-20\% and 90\%-10\% scenario. The results of these scenarios running NAS benchmarks class C on 8 or 9 nodes are place in the tables (\ref{table:res_s1} and \ref{table:res_s2}).
 
  \begin{table}[htb]
   \caption{The results of 70\%-30\% powers scenario}
 
  \begin{table}[htb]
   \caption{The results of 70\%-30\% powers scenario}
@@ -676,20 +1023,36 @@ The results of the previous section are obtained using a percentage of 80\% for
   \subfloat[Comparison the average of the results on 8 nodes]{%
     \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
   \quad%
   \subfloat[Comparison the average of the results on 8 nodes]{%
     \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
   \quad%
-  \subfloat[Comparison the selected frequency scaling factors for 8 nodes]{%
+  \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
     \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
     \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
-\end{figure}
+\end{figure}  
+
 
 
-To compare the results of these three powers scenarios, we are take the average of the performance degradation, the energy saving and the distances for all NAS benchmarks running on 8 or 9 nodes of class C, as in figure (\ref{fig:sen_comp}). Thus, according to the average of the results, the energy saving ratio is increased when using the a higher percentage for dynamic power (e.g. 90\%-10\% scenario). While the average of energy saving is decreased in 70\%-30\% scenario. 
-Because the static energy consumption is increase. Moreover, the average of distances is more related to energy saving changes. The average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). The raison behind these relations, that the proposed algorithm optimize both energy consumption and performance in the same time. Therefore, when using a higher ratio for dynamic power the algorithm selecting bigger frequency scaling factors values, more energy saving versus more performance degradation, for example see the figure (\ref{fig:scales_comp}). The inverse happen when using a higher ratio for  static  power, the algorithm proportionally  selects a smaller scaling values, less energy saving versus less performance degradation. This is because the  
-algorithm also keeps as much as possible the static energy consumption that is always related to execution time. 
 
 \subsection{The verifications of the proposed method}
 \label{sec.verif}
 
 \subsection{The verifications of the proposed method}
 \label{sec.verif}
-The precision of the proposed algorithm mainly depends on the execution time prediction model and the energy model. The energy model is significantly depends on the execution time model EQ(\ref{eq:perf}), that the energy static related linearly. So, we are compare the predicted execution time with the real execution time (Simgrid time)  values that gathered  offline for the NAS benchmarks class B executed on 8 or 9 nodes. The execution time model can predicts 
-the real execution time by maximum normalized error 0.03 of all NAS benchmarks. The second verification that we are make is for the scaling algorithm to prove its ability to selects the best set of frequency scaling factors. Therefore, we are expand the algorithm to test at each iteration the frequency scaling factor of the slowest node with the all scaling factors available of the other nodes. This version of the algorithm is applied to different NAS benchmarks classes with different number of nodes. The results from the two algorithms is identical. While the proposed algorithm is runs faster, 10 times faster on average than the expanded algorithm.
+The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
+EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
+The energy model is also significantly dependent  on the execution time model because the static energy is 
+linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
+the work presented in this paper is based on the execution time model. To verify this model, the predicted 
+execution time was compared to  the real execution time over Simgrid for all  the NAS parallel benchmarks 
+running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
+the maximum normalized difference between  the predicted execution time  and the real execution time is equal 
+to 0.03 for all the NAS benchmarks.
+
+Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) 
+in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm 
+that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
+different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
+and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
+for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in 
+table~(\ref{table:platform}), it takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes 
+to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number 
+of iterations and $N$ is the number of computing nodes. The algorithm needs  from 12 to 20 iterations to select the best 
+vector of frequency scaling factors that gives the results of the section (\ref{sec.res}).
 
 \section{Conclusion}
 \label{sec.concl}
 
 \section{Conclusion}
 \label{sec.concl}
@@ -715,5 +1078,7 @@ the real execution time by maximum normalized error 0.03 of all NAS benchmarks.
 %%% ispell-local-dictionary: "american"
 %%% End:
 
 %%% ispell-local-dictionary: "american"
 %%% End:
 
-%  LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
-%  LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
+% LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
+% LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
+% LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
+% LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT