]> AND Private Git Repository - mpi-energy2.git/blobdiff - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some changes
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
index 0973f102920fffb8b120050e6579f17d31a5ffc5..329d52665d9659a659f1ff1ccc978bbe67aabd6e 100644 (file)
@@ -208,14 +208,24 @@ reductions. All the experimental results were conducted over the SimGrid
 simulator \cite{SimGrid}, which offers easy tools to describe homogeneous and heterogeneous  platforms, and to simulate the execution of message passing parallel
 applications over them. 
 
 simulator \cite{SimGrid}, which offers easy tools to describe homogeneous and heterogeneous  platforms, and to simulate the execution of message passing parallel
 applications over them. 
 
-In this paper, a new frequency selecting algorithm, adapted to grid platforms
-composed of heterogeneous clusters, is presented. It is applied to the NAS
+
+This paper presents the following contributions :
+\begin{enumerate}
+\item two new energy and performance models for message passing 
+  synchronous applications with iterations running over a heterogeneous grid platform. Both models
+  take into account communications and slack times. The models can predict the
+  required energy and the execution time of the application.
+
+\item a new online frequency selecting algorithm for heterogeneous grid
+  platforms. The algorithm has a very small overhead and does not need any
+  training nor profiling. It uses a new optimization function which
+  simultaneously maximizes the performance and minimizes the energy consumption
+  of a message passing  synchronous application with iterations.  The algorithm  was applied to the NAS
 parallel benchmarks and evaluated over a real testbed, the Grid'5000 platform
 parallel benchmarks and evaluated over a real testbed, the Grid'5000 platform
-\cite{grid5000}. It selects for a grid platform running a message passing
- application with iterations the vector of frequencies that simultaneously tries to
-offer the maximum energy reduction and minimum performance degradation
-ratios. The algorithm has a very small overhead, works online and does not need
-any training or profiling.
+\cite{grid5000}.
+
+\end{enumerate}
+
 
 
 This paper is organized as follows: Section~\ref{sec.relwork} presents some
 
 
 This paper is organized as follows: Section~\ref{sec.relwork} presents some
@@ -300,21 +310,7 @@ some heuristic.  Chen et
 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
 programming approach to minimize the power consumption of heterogeneous servers
 while respecting given time constraints.  This approach had considerable
 al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
 programming approach to minimize the power consumption of heterogeneous servers
 while respecting given time constraints.  This approach had considerable
-overhead.  In contrast to the above described papers, this paper presents the
-following contributions :
-\begin{enumerate}
-\item two new energy and performance models for message passing 
-  synchronous applications with iterations running over a heterogeneous grid platform. Both models
-  take into account communication and slack times. The models can predict the
-  required energy and the execution time of the application.
-
-\item a new online frequency selecting algorithm for heterogeneous grid
-  platforms. The algorithm has a very small overhead and does not need any
-  training nor profiling. It uses a new optimization function which
-  simultaneously maximizes the performance and minimizes the energy consumption
-  of a message passing  synchronous application with iterations.
-
-\end{enumerate}
+overhead.
 
 
 
 
 
 
@@ -388,7 +384,7 @@ vector of scaling factors can be predicted using Equation (\ref{eq:perf}).
 \begin{equation}
   \label{eq:perf}
   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
 \begin{equation}
   \label{eq:perf}
   \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} \cdot S_{ij}) 
-  +\mathop{\min_{j=1,\dots,M_i}}  (\Tcm[hj])
+  +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])
 \end{equation}
 %
 where $N$ is the number of  clusters in the grid, $M_i$ is the number of  nodes in
 \end{equation}
 %
 where $N$ is the number of  clusters in the grid, $M_i$ is the number of  nodes in
@@ -402,10 +398,13 @@ Therefore, the execution time of the  application is equal to
 the execution time of one iteration as in Equation (\ref{eq:perf}) multiplied by the
 number of iterations of that application.
 
 the execution time of one iteration as in Equation (\ref{eq:perf}) multiplied by the
 number of iterations of that application.
 
-This prediction model is developed from the model to predict the execution time
-of message passing distributed applications for homogeneous and heterogeneous clusters
-~\cite{Our_first_paper,pdsec2015}. \textcolor{blue}{where the homogeneous cluster predication model was used one scaling factor denoted as $S$, because all the nodes in the cluster have the same computing powers. Whereas, in heterogeneous cluster prediction model all the nodes have different scales and the scaling factors have denoted as one dimensional vector $(S_1, S_2, \dots, S_N)$. The execution time prediction model for a grid Equation \ref{eq:perf} defines a two dimensional array of scales  
-$(S_{11}, S_{12},\dots, S_{NM_i})$}. This model is used in the method to optimize both the energy consumption and the performance of iterative methods, which is presented in the following sections.
+This model is an adaptation of the one developed in ~\cite{Our_first_paper}  which predicts the execution time
+of message passing  applications with iterations running on homogeneous clusters. 
+In a  homogeneous cluster only one scaling factor denoted as $S$ was used because all the nodes in the cluster have the same computing power.
+In a heterogeneous cluster, each node may have a different scaling factor denoted as  $(S_i)$ where $i$ is the index of the node. In a grid, each node in each cluster may have a scaling factor. The whole set of scaling factors of all the computing nodes in the grid  is denoted by a two dimensional array of scales  
+$(S_{11}, S_{12},\dots, S_{NM_i})$ where $N$ is the number of used clusters and $M_i$ is the number of nodes in cluster $i$.  
+
+The execution time model, Equation \ref{eq:perf}, is used in the algorithm presented in section \ref{sec.optim}. The latter selects the scaling factors that optimize both the energy consumption and the performance of message passing applications with iterations running on grids.
 
 
 \subsection{Energy model for heterogeneous grid platform}
 
 
 \subsection{Energy model for heterogeneous grid platform}
@@ -492,9 +491,9 @@ processor after scaling its frequency is computed as follows:
 
 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
 different dynamic and static powers from the nodes of the other clusters, 
 
 In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
 different dynamic and static powers from the nodes of the other clusters, 
-noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  \textcolor{blue}{Therefore, even if the distributed 
-message passing  application \textcolor{blue}{with iterations} is load balanced, the computation time of each CPU $j$ 
-in cluster $i$ noted $\Tcp[ij]$ may be slightly different due to the delay caused by the scheduler of the operating system}. Therefore, different frequency scaling factors may be
+noted as $\Pd[ij]$ and $\Ps[ij]$ respectively.  Moreover, even if the distributed 
+message passing  application with iterations is load balanced, the computation time of each CPU $j$ in cluster $i$
+ noted $\Tcp[ij]$ may be slightly different due to the delay caused by the scheduler of the operating system. Therefore, different frequency scaling factors may be
 computed in order to decrease the overall energy consumption of the application
 and reduce the slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
 computed in order to decrease the overall energy consumption of the application
 and reduce the slack times.  The communication time of a processor $j$ in cluster $i$ is noted as
 $\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
@@ -503,8 +502,8 @@ communication times. While the dynamic energy is computed according to the
 frequency scaling factor and the dynamic power of each node as in
 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
 of one iteration multiplied by the static power of each processor. 
 frequency scaling factor and the dynamic power of each node as in
 (\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
 of one iteration multiplied by the static power of each processor. 
-\textcolor{blue}{ The CPU during the communication times consumes only the static power. While 
-in the computation times, it consumes both the dynamic and the static power refer to \cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.} 
+ The CPU during the communication times consumes only the static power. While 
+in the computation times, it consumes both the dynamic and the static powers, for more information refer to \cite{Freeh_Exploring.the.Energy.Time.Tradeoff}.
 The overall energy consumption of a message passing distributed application executed over a
 heterogeneous grid platform during one iteration is the summation of all dynamic and
 static energies for $M_i$ processors in $N$ clusters.  It is computed as follows:
 The overall energy consumption of a message passing distributed application executed over a
 heterogeneous grid platform during one iteration is the summation of all dynamic and
 static energies for $M_i$ processors in $N$ clusters.  It is computed as follows:
@@ -521,7 +520,7 @@ Reducing the frequencies of the processors according to the vector of scaling
 factors $(S_{11}, S_{12},\dots, S_{NM_i})$ may degrade the performance of the application
 and thus, increase the static energy because the execution time is
 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
 factors $(S_{11}, S_{12},\dots, S_{NM_i})$ may degrade the performance of the application
 and thus, increase the static energy because the execution time is
 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
-for the  application \textcolor{blue}{with iterations} can be measured by measuring the energy
+for a synchronous  application with iterations can be measured by measuring the energy
 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
 of iterations of that application.
 
 consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
 of iterations of that application.
 
@@ -546,7 +545,7 @@ works, \cite{Our_first_paper} and \cite{pdsec2015}, two methods that select the
 frequency scaling factors for a homogeneous and a heterogeneous cluster respectively, were proposed. 
 Both methods selects the frequencies that gives the best trade-off between 
 energy consumption reduction and performance for  message passing
 frequency scaling factors for a homogeneous and a heterogeneous cluster respectively, were proposed. 
 Both methods selects the frequencies that gives the best trade-off between 
 energy consumption reduction and performance for  message passing
- synchronous applications \textcolor{blue}{with iterations}.   In this work we
+ synchronous applications with iterations.   In this work we
 are interested in grids that are composed of heterogeneous clusters. The nodes from distinct clusters may have 
  different characteristics such  as  dynamic power, static power, computation power, 
 frequencies range, network latency and bandwidth. 
 are interested in grids that are composed of heterogeneous clusters. The nodes from distinct clusters may have 
  different characteristics such  as  dynamic power, static power, computation power, 
 frequencies range, network latency and bandwidth. 
@@ -569,13 +568,13 @@ maximum frequency for all nodes) as follows:
 \end{equation}
 %
 where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told}).
 \end{equation}
 %
 where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told}).
-\textcolor{blue}{
+
 \begin{equation}
   \label{eq:told}
    \Told = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} ) 
 \begin{equation}
   \label{eq:told}
    \Told = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\TcpOld[ij]} ) 
-  +\mathop{\min_{j=1,\dots,M_i}}  (\Tcm[hj])    
+  +\mathop{\min_{j=1,\dots,M_h}}  (\Tcm[hj])    
 \end{equation}
 \end{equation}
-}
+
 In the same way, the energy is normalized by computing the ratio between the
 consumed energy while scaling down the frequency and the consumed energy with
 maximum frequency for all  nodes:
 In the same way, the energy is normalized by computing the ratio between the
 consumed energy while scaling down the frequency and the consumed energy with
 maximum frequency for all  nodes:
@@ -713,11 +712,11 @@ in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modelin
 
 
 In this section, the scaling factors selection algorithm for  grids, Algorithm~\ref{HSA}, 
 
 
 In this section, the scaling factors selection algorithm for  grids, Algorithm~\ref{HSA}, 
-is presented. It selects the vector of the frequency
+is presented. It selects the vector of  frequency
 scaling factors  that gives the best trade-off between minimizing the
 energy consumption and maximizing the performance of a message passing
 scaling factors  that gives the best trade-off between minimizing the
 energy consumption and maximizing the performance of a message passing
-synchronous  application \textcolor{blue}{with iterations} executed on a  grid. It works
-online during the execution time of the  message passing program \textcolor{blue}{with iterations}.  It
+synchronous  application with iterations executed on a  grid. It works
+online during the execution time of the  application.  It
 uses information gathered during the first iteration such as the computation
 time and the communication time in one iteration for each node. The algorithm is
 executed after the first iteration and returns a vector of optimal frequency
 uses information gathered during the first iteration such as the computation
 time and the communication time in one iteration for each node. The algorithm is
 executed after the first iteration and returns a vector of optimal frequency
@@ -725,7 +724,7 @@ scaling factors that satisfies the objective function (\ref{eq:max}). The
 program applies DVFS operations to change the frequencies of the CPUs according
 to the computed scaling factors.  This algorithm is called just once during the
 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
 program applies DVFS operations to change the frequencies of the CPUs according
 to the computed scaling factors.  This algorithm is called just once during the
 execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
-scaling algorithm is called in the  MPI program \textcolor{blue}{with iterations}.
+scaling algorithm is called in the application.
 
 \begin{figure}[!t]
   \centering
 
 \begin{figure}[!t]
   \centering
@@ -855,9 +854,7 @@ selected clusters and are presented in Table~\ref{table:grid5000}.
 
 
 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over Grid'5000.
 
 
 The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over Grid'5000.
-The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. \textcolor{blue}{These benchmarks are message passing  applications with iterations compute
-the same block of operations several times, starting from the initial solution until reaching
-the acceptable approximation of the exact solution.}
+The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These benchmarks are considered as message passing  applications with iterations because the same block of operations is executed many times.
  These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In the next sections, the  class D was used for all the benchmarks in all the experiments. 
 
  These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
 The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In the next sections, the  class D was used for all the benchmarks in all the experiments. 
 
@@ -898,9 +895,7 @@ The benchmarks have seven different classes, S, W, A, B, C, D and E, that repres
 \subsection{The experimental results of the scaling algorithm}
 \label{sec.res}
 In this section, the results of the application of the scaling factors selection algorithm \ref{HSA} 
 \subsection{The experimental results of the scaling algorithm}
 \label{sec.res}
 In this section, the results of the application of the scaling factors selection algorithm \ref{HSA} 
-to the NAS parallel benchmarks are presented. \textcolor{blue}{Each experiment of this section and next sections has been executed many times and the results presented in the figures are the average values of many execution.}
-
-As mentioned previously, the experiments 
+to the NAS parallel benchmarks are presented. Each experiment  has been executed many times and the results presented in the figures are the average values of many executions. As mentioned previously, the experiments 
 were conducted over two sites of Grid'5000,  Lyon and Nancy sites. 
 Two scenarios were considered while selecting the clusters from these two sites :
 \begin{itemize}
 were conducted over two sites of Grid'5000,  Lyon and Nancy sites. 
 Two scenarios were considered while selecting the clusters from these two sites :
 \begin{itemize}
@@ -965,7 +960,7 @@ The overall energy consumption of all the benchmarks solving the class D instanc
 using the proposed frequency selection algorithm is measured 
 using the equation of the reduced energy consumption, Equation~\ref{eq:energy}. This model uses the measured dynamic power showed in Table~\ref{table:grid5000}
 and the static 
 using the proposed frequency selection algorithm is measured 
 using the equation of the reduced energy consumption, Equation~\ref{eq:energy}. This model uses the measured dynamic power showed in Table~\ref{table:grid5000}
 and the static 
-power is assumed to be equal to 20\% of the dynamic power \textcolor{blue}{as in \cite{Rauber_Analytical.Modeling.for.Energy}}. The execution
+power is assumed to be equal to 20\% of the dynamic power as in \cite{Rauber_Analytical.Modeling.for.Energy}. The execution
 time is measured for all the benchmarks over these different scenarios.  
 
 The energy consumptions  and the execution times for all the benchmarks are 
 time is measured for all the benchmarks over these different scenarios.  
 
 The energy consumptions  and the execution times for all the benchmarks are 
@@ -1247,9 +1242,9 @@ This paper presents a new online frequencies selection algorithm.
  The algorithm selects the best vector of 
 frequencies that maximizes  the trade-off distance 
 between the predicted energy consumption and the predicted execution time of the distributed 
  The algorithm selects the best vector of 
 frequencies that maximizes  the trade-off distance 
 between the predicted energy consumption and the predicted execution time of the distributed 
- applications \textcolor{blue}{with iterations} running over a heterogeneous grid. A new energy model 
+ applications with iterations running over a heterogeneous grid. A new energy model 
 is used by the proposed algorithm to predict the energy consumption 
 is used by the proposed algorithm to predict the energy consumption 
-of the distributed  message passing application \textcolor{blue}{with iterations} running over a grid architecture.
+of the application.
 To evaluate the proposed method on a real heterogeneous grid platform, it was applied on the  
 NAS parallel benchmarks   and the  class D instance was executed over the  Grid'5000 testbed platform. 
 The experiments executed on 16 nodes, distributed over three clusters, showed that the algorithm   on average reduces by 30\% the energy consumption
 To evaluate the proposed method on a real heterogeneous grid platform, it was applied on the  
 NAS parallel benchmarks   and the  class D instance was executed over the  Grid'5000 testbed platform. 
 The experiments executed on 16 nodes, distributed over three clusters, showed that the algorithm   on average reduces by 30\% the energy consumption
@@ -1260,12 +1255,11 @@ Finally, the proposed algorithm was compared to another method that uses
 the well known energy and delay product as an objective function. The comparison results showed 
 that the proposed algorithm outperforms the latter by selecting a vector of frequencies that gives a better trade-off  between energy consumption reduction and performance. 
 
 the well known energy and delay product as an objective function. The comparison results showed 
 that the proposed algorithm outperforms the latter by selecting a vector of frequencies that gives a better trade-off  between energy consumption reduction and performance. 
 
-In the near future, \textcolor{blue}{we will adapt the proposed algorithm to take the variability between some iterations in two steps. In the first step,  the algorithm selects the best frequencies at the end of the first iterations and apply them to the system. In the second step, after some iterations (e.g. 5 iterations) the algorithm recomputes the frequencies depending on the average of the communication and computation times  for all  previous iterations. It will change the frequency of each node if the new frequency is different from the old one. Otherwise, it keeps the old frequency.} 
-Also, we would like to develop a similar method that is adapted to
-asynchronous  applications \textcolor{blue}{with iterations} where iterations are not synchronized and communications are overlapped with computations. 
+In the near future, we will adapt the proposed algorithm to take into consideration the variability between some iterations.  For example, the proposed algorithm can be executed twice: after the first iteration the frequencies are scaled down according to the execution times measured in the first iteration, then after a fixed number of iterations, the frequencies are adjusted according to the execution times measured during the fixed number of iterations. If the  computing power of the system is constantly changing, it would be interesting to implement a mechanism that detects this change and adjusts the frequencies according to the variability of the system. We would like also to develop a similar method that is adapted to
+asynchronous  applications with iterations where iterations are not synchronized and communications are overlapped with computations. 
 The development of such a method might require a new energy model because the
 number of iterations is not known in advance and depends on
 The development of such a method might require a new energy model because the
 number of iterations is not known in advance and depends on
-the global convergence of the iterative system.
+the global convergence of the iterative system. Finally, it would be interesting to evaluate the scalability of the proposed algorithm by running it on large platforms composed of many thousands of cores. The scalability of the algorithm can be improved by distributing it  in a hierarchical manner where a leader is chosen for each cluster or a group of nodes  to compute their scaled frequencies and by using asynchronous messages to exchange the the data measured at the first iteration.