\newcommand{\MaxDist}{\mathit{Max}\Dist}
\newcommand{\MinTcm}{\mathit{Min}\Tcm}
\newcommand{\Ntrans}{\Xsub{N}{trans}}
+\newcommand{\Pd}{\Xsub{P}{d}}
\newcommand{\PdNew}{\Xsub{P}{dNew}}
\newcommand{\PdOld}{\Xsub{P}{dOld}}
-%\newcommand{\Pdyn}{\Xsub{P}{dyn}}
-\newcommand{\Pd}{\Xsub{P}{d}}
-%\newcommand{\PnormInv}{\Xsub{P}{NormInv}}
\newcommand{\Pnorm}{\Xsub{P}{Norm}}
-%\newcommand{\Pstates}{\Xsub{P}{states}}
-%\newcommand{\Pstatic}{\Xsub{P}{static}}
\newcommand{\Ps}{\Xsub{P}{s}}
\newcommand{\Scp}{\Xsub{S}{cp}}
\newcommand{\Sopt}{\Xsub{S}{opt}}
\newcommand{\Tcm}{\Xsub{T}{cm}}
-%\newcommand{\Tcomp}{\Xsub{T}{comp}}
-\newcommand{\TcpOld}{\Xsub{T}{cpOld}}
\newcommand{\Tcp}{\Xsub{T}{cp}}
-%\newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
-%\newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
-%\newcommand{\Tmax}{\Xsub{T}{max}}
+\newcommand{\TcpOld}{\Xsub{T}{cpOld}}
\newcommand{\Tnew}{\Xsub{T}{New}}
-%\newcommand{\Tnorm}{\Xsub{T}{Norm}}
\newcommand{\Told}{\Xsub{T}{Old}}
\begin{document}
\If{(not the first frequency)}
\State $F_i \gets F_i+\Fdiff_i,~i=1,\dots,N.$
\EndIf
- \State $\Told \gets max_{~i=1,\dots,N } (\Tcp_i+\Tcm_i)$
+ \State $\Told \gets \max_{i=1,\dots,N} (\Tcp_i+\Tcm_i)$
% \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot \Tcp_i)} +\sum_{i=1}^{N} {(\Ps_i \cdot \Told)}$
\State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot \Tcp_i + \Ps_i \cdot \Told)}$
\State $\Sopt_{i} \gets 1,~i=1,\dots,N. $
\State $F_i \gets F_i - \Fdiff_i,~i=1,\dots,N.$
\State $S_i \gets \frac{\Fmax_i}{F_i},~i=1,\dots,N.$
\EndIf
- \State $\Tnew \gets max_\textit{~i=1,\dots,N} (\Tcp_{i} \cdot S_{i}) + \MinTcm $
+ \State $\Tnew \gets \max_{i=1,\dots,N} (\Tcp_{i} \cdot S_{i}) + \MinTcm $
% \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot \Tcp_i)} + \sum_{i=1}^{N} {(\Ps_i \cdot \rlap{\Tnew)}} $
\State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot \Tcp_i + \Ps_i \cdot \rlap{\Tnew)}} $
\State $\Pnorm \gets \frac{\Told}{\Tnew}$